2023
Production and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion
Chaurasia R, Liang C, How K, Vieira D, Vinetz J. Production and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion. The Protein Journal 2023, 42: 792-801. PMID: 37653175, DOI: 10.1007/s10930-023-10152-2.Peer-Reviewed Original ResearchMCherry fusion proteinsFusion proteinMCherry tagGene familyMCherry fusionsProtein productionFluorescent fusion proteinsRecombinant protein expressionRecombinant protein productionVM proteinsSuch proteinsFunctional proteinsCell biologyLike domainFast protein liquid chromatographyLeptospiral virulenceSoluble proteinUnique memberPink coloniesProtein scienceStructural predictionsProtein liquid chromatographyRicin BFunctional studiesProtein
2020
Insulin and epidermal growth factor receptor family members share parallel activation mechanisms
Ferguson KM, Hu C, Lemmon MA. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Science 2020, 29: 1331-1344. PMID: 32297376, PMCID: PMC7255510, DOI: 10.1002/pro.3871.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsReceptor tyrosine kinasesEpidermal growth factor receptorLigand-binding moduleInsulin receptorAutoinhibitory interactionsRecent cryo-electron microscopy structuresCryo-electron microscopy structureFirst receptor tyrosine kinasesRecent cryo-EM structureEGFR activation mechanismsEpidermal growth factor receptor family membersActivated insulin receptorIntramolecular autoinhibitory interactionCryo-EM structureActivation mechanismCysteine-rich domainFibronectin type III domainReceptor family membersEGFR family membersType III domainMicroscopy structureDomain compositionTransmembrane regionGrowth factor receptorLike domain
2017
Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex
Hu C, Rai R, Huang C, Broton C, Long J, Xu Y, Xue J, Lei M, Chang S, Chen Y. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Research 2017, 27: 1485-1502. PMID: 29160297, PMCID: PMC5717407, DOI: 10.1038/cr.2017.144.Peer-Reviewed Original ResearchConceptsShelterin complexTelomeric DNAStructure-based mutagenesis analysisProtein-protein interaction platformRepetitive DNA sequencesTelomere end protectionN-terminal domainMammalian telomeresChromosome endsTelomeric complexNucleoprotein complexesMutagenesis analysisEnd protectionDNA sequencesLike domainHeterodimer bindsTIN2Functional analysisMolecular mechanismsTRF2TPP1Stable assemblyEssential roleTRF1Telomeres
2016
Promotion of RAD51-Mediated Homologous DNA Pairing by the RAD51AP1-UAF1 Complex
Liang F, Longerich S, Miller AS, Tang C, Buzovetsky O, Xiong Y, Maranon DG, Wiese C, Kupfer GM, Sung P. Promotion of RAD51-Mediated Homologous DNA Pairing by the RAD51AP1-UAF1 Complex. Cell Reports 2016, 15: 2118-2126. PMID: 27239033, PMCID: PMC5381662, DOI: 10.1016/j.celrep.2016.05.007.Peer-Reviewed Original ResearchConceptsHomologous recombinationFanconi anemia DNA damage response pathwayDNA damage response pathwaySmall ubiquitin-like modifierDNA damage hypersensitivityHomologous DNA pairingSUMO-interacting motifDamage response pathwayUbiquitin-like modifierFANCD2 ubiquitinationGenome maintenanceComplex formationNucleoprotein intermediatesRAD51 recombinaseDNA pairingProtein complexesBinds DNAAccessory factorsResponse pathwaysHomologous DNADNA repairLike domainUAF1RAD51RAD51AP1
2009
Bacterial proteins as potential drugs in the treatment of leukemia
Kwan JM, Fialho AM, Kundu M, Thomas J, Hong CS, Gupta T, Chakrabarty AM. Bacterial proteins as potential drugs in the treatment of leukemia. Leukemia Research 2009, 33: 1392-1399. PMID: 19250673, DOI: 10.1016/j.leukres.2009.01.024.Peer-Reviewed Original ResearchConceptsBacterial proteinsSerine/threonine kinaseLeukemia cell linesCaspase recruitment domainCell linesAkt-Ser-473Cell cycle arrestG2/M phaseThreonine kinaseLike domainCARD domainRecruitment domainProtein stabilizationCycle arrestM phaseHL60 cellsProteinActive formPeripheral blood mononuclear cellsBlood mononuclear cellsLeukemia cellsCancer typesAzurinCytotoxic effectsTreatment of leukemia
2007
A Role of the Lowe Syndrome Protein OCRL in Early Steps of the Endocytic Pathway
Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P. A Role of the Lowe Syndrome Protein OCRL in Early Steps of the Endocytic Pathway. Developmental Cell 2007, 13: 377-390. PMID: 17765681, PMCID: PMC2025683, DOI: 10.1016/j.devcel.2007.08.004.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnimalsCarrier ProteinsCell LineChlorocebus aethiopsClathrin-Coated VesiclesCOS CellsCrystallography, X-RayEndocytosisEndosomesGlutathione TransferaseGreen Fluorescent ProteinsHumansKidneyModels, BiologicalModels, MolecularMolecular Sequence DataMutationPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphorylationProtein Structure, SecondaryProtein Structure, TertiaryRecombinant Fusion ProteinsSequence Homology, Amino AcidTime FactorsConceptsEndocytic pathwayLike domainEndocytic clathrin-coated pitsLowe syndrome protein OCRLRole of OCRLEarly endocytic pathwayClathrin-coated pitsPeripheral early endosomesPhosphatase domainMembrane traffickingEarly endosomesGrowth factor receptorProtein networkClathrin boxOCRLDisease mutationsCell surfaceEarly stepsLowe syndromeFactor receptorRenal Fanconi syndromeDisease mechanismsMembrane interfaceAPPL1Predominant localization
2001
High-Affinity Binding of a FYVE Domain to Phosphatidylinositol 3-Phosphate Requires Intact Phospholipid but Not FYVE Domain Oligomerization †
Sankaran V, Klein D, Sachdeva M, Lemmon M. High-Affinity Binding of a FYVE Domain to Phosphatidylinositol 3-Phosphate Requires Intact Phospholipid but Not FYVE Domain Oligomerization †. Biochemistry 2001, 40: 8581-8587. PMID: 11456498, DOI: 10.1021/bi010425d.Peer-Reviewed Original ResearchMeSH KeywordsBinding, CompetitiveBlood ProteinsCarrier ProteinsCation Transport ProteinsGlutathione TransferaseGuanine Nucleotide Exchange FactorsHeLa CellsHumansLiposomesMonosaccharide Transport ProteinsPhosphatidylinositol PhosphatesPhospholipidsPhosphoproteinsProtein BindingProtein Structure, TertiaryProteinsRecombinant Fusion ProteinsSymportersZinc FingersConceptsFYVE domainPH domainDomain oligomerizationSpecific PH domainsVacuolar protein sortingPleckstrin homology domainLipid headgroupsProtein sortingMembrane trafficHomology domainSpecific phosphoinositideLike domainEndosomal maturationHigh-affinity bindingPreferred lipidPhospholipase CPhosphoinositideIntact lipidsIntact phospholipidsOligomerizationDomainMembrane
2000
Physical Association of Eukaryotic Initiation Factor 4G (eIF4G) with eIF4A Strongly Enhances Binding of eIF4G to the Internal Ribosomal Entry Site of Encephalomyocarditis Virus and Is Required for Internal Initiation of Translation
Lomakin I, Hellen C, Pestova T. Physical Association of Eukaryotic Initiation Factor 4G (eIF4G) with eIF4A Strongly Enhances Binding of eIF4G to the Internal Ribosomal Entry Site of Encephalomyocarditis Virus and Is Required for Internal Initiation of Translation. Molecular And Cellular Biology 2000, 20: 6019-6029. PMID: 10913184, PMCID: PMC86078, DOI: 10.1128/mcb.20.16.6019-6029.2000.Peer-Reviewed Original ResearchConceptsInternal ribosomal entry siteEMCV internal ribosomal entry siteEIF4GAdditional amino-terminal sequenceEukaryotic initiation factor 4GRNA recognition motifEukaryotic initiation factor 4GIInternal ribosomal entryEntry siteComplex formationBeta-globin mRNAAmino-terminal sequenceEncephalomyocarditis virus internal ribosomal entry siteRibosomal entryRecognition motifLike domainMutational analysisPhysical associationInternal initiationHigh-affinity bindingBinding fragmentSpecific interactionsRNASimilar affinitySpecific high-affinity binding
1997
Kit Receptor Dimerization Is Driven by Bivalent Binding of Stem Cell Factor*
Lemmon M, Pinchasi D, Zhou M, Lax I, Schlessinger J. Kit Receptor Dimerization Is Driven by Bivalent Binding of Stem Cell Factor*. Journal Of Biological Chemistry 1997, 272: 6311-6317. PMID: 9045650, DOI: 10.1074/jbc.272.10.6311.Peer-Reviewed Original ResearchConceptsStem cell factorKIT dimerizationReceptor dimerizationExtracellular domainCell factorFourth Ig-like domainColony-stimulating factor-1Receptor tyrosine kinasesIg-like domainsCytokine stem cell factorDomain bindsPlatelet-derived growth factorGrowth factorLike domainDimer bindsMost growth factorsTyrosine kinaseDimerization siteConformational changesReceptor KITAnalytical ultracentrifugationForms of KITBivalent bindingFactor 1Dimerization
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply