2023
Active Sites of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to Methanol
Rooney C, Lyons M, Wu Y, Hu G, Wang M, Choi C, Gao Y, Chang C, Brudvig G, Feng Z, Wang H. Active Sites of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to Methanol. Angewandte Chemie International Edition 2023, 63: e202310623. PMID: 37820079, DOI: 10.1002/anie.202310623.Peer-Reviewed Original ResearchActive siteCobalt phthalocyanineSitu X-ray absorption spectroscopyX-ray absorption spectroscopy characterizationX-ray absorption spectroscopyElectrocatalytic CO2 reductionStructure-reactivity correlationsAbsorption spectroscopy characterizationElectrocatalytic measurementsMetal coordinationElectrocatalytic performanceCoordination environmentMolecular dispersionRelated porphyrinsCNT surfaceElectron transferAbsorption spectroscopyConductive carbonElectronic interactionsKey intermediateCO2 reductionPc macrocycleReaction mechanismSpectroscopy characterizationMethanol pathwayActive Sites of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to Methanol
Rooney C, Lyons M, Wu Y, Hu G, Wang M, Choi C, Gao Y, Chang C, Brudvig G, Feng Z, Wang H. Active Sites of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to Methanol. Angewandte Chemie 2023, 136 DOI: 10.1002/ange.202310623.Peer-Reviewed Original ResearchCO 2 reductionActive siteCobalt phthalocyanineSitu X-ray absorption spectroscopyX-ray absorption spectroscopy characterizationX-ray absorption spectroscopyElectrocatalytic CO2 reductionStructure-reactivity correlationsAbsorption spectroscopy characterizationCO 2 electroreductionCO 2Electrocatalytic measurementsCoordination environmentElectrocatalytic performanceMolecular dispersionRelated porphyrinsCNT surfaceElectron transferAbsorption spectroscopyConductive carbonElectronic interactionsKey intermediateCO2 reductionPc macrocycleReaction mechanism
2016
Self-assembly of size-controlled liposomes on DNA nanotemplates
Yang Y, Wang J, Shigematsu H, Xu W, Shih WM, Rothman JE, Lin C. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nature Chemistry 2016, 8: 476-483. PMID: 27102682, PMCID: PMC5021307, DOI: 10.1038/nchem.2472.Peer-Reviewed Original ResearchConceptsDNA nanotemplatesArtificial lipid bilayer membranesLipid bilayer formationLipid bilayer membranesSelf-AssemblyTemplating methodKey intermediateBilayer formationDrug deliveryArtificial vesiclesLipid compositionNanoscale precisionNanotemplatesHomogeneous liposomesUnilamellar vesiclesLiposome formationVesicular transportProtein structureMembrane structureVesicle sizeLiposomesIntermediatesFormationVesiclesStructure
2015
Synthesis of ent‐Ketorfanol via a C–H Alkenylation/Torquoselective 6π Electrocyclization Cascade
Phillips E, Mesganaw T, Patel A, Duttwyler S, Mercado B, Houk K, Ellman J. Synthesis of ent‐Ketorfanol via a C–H Alkenylation/Torquoselective 6π Electrocyclization Cascade. Angewandte Chemie 2015, 127: 12212-12216. DOI: 10.1002/ange.201505604.Peer-Reviewed Original ResearchElectrocyclization cascadeIntramolecular Friedel-Crafts alkylationFriedel–Crafts alkylationAvailable precursorsAsymmetric synthesisObserved selectivityKey intermediateKetone functionalityHigh torquoselectivityAcid-catalyzed rearrangementVicinal diolsFused bicyclicComputational studyConformational effectsRh ISingle stepFinal ringSynthesisSynthesis of ent‐Ketorfanol via a C–H Alkenylation/Torquoselective 6π Electrocyclization Cascade
Phillips EM, Mesganaw T, Patel A, Duttwyler S, Mercado BQ, Houk KN, Ellman JA. Synthesis of ent‐Ketorfanol via a C–H Alkenylation/Torquoselective 6π Electrocyclization Cascade. Angewandte Chemie International Edition 2015, 54: 12044-12048. PMID: 26385263, PMCID: PMC4676713, DOI: 10.1002/anie.201505604.Peer-Reviewed Original ResearchConceptsElectrocyclization cascadeIntramolecular Friedel-Crafts alkylationFriedel–Crafts alkylationAvailable precursorsAsymmetric synthesisObserved selectivityKey intermediateKetone functionalityHigh torquoselectivityAcid-catalyzed rearrangementVicinal diolsFused bicyclicComputational studyConformational effectsSingle stepFinal ringSynthesis
1999
A mechanistic and structural model for the formation and reactivity of a MnV[double bond, length half m-dash]O species in photosynthetic water oxidation
Limburg J, Szalai V, Brudvig G. A mechanistic and structural model for the formation and reactivity of a MnV[double bond, length half m-dash]O species in photosynthetic water oxidation. Dalton Transactions 1999, 0: 1353-1362. DOI: 10.1039/a807583b.Peer-Reviewed Original ResearchProtein complex photosystem IIPhotosynthetic water oxidationWater oxidationMn4 clusterModel complexesO bond-forming stepO bond-forming reactionsRedox-active tyrosine residueSubstrate water moleculesBond-forming reactionsO bond formationBond-forming stepHydrogen bond networkTetranuclear Mn clusterElectrophilic oxygen atomHydroxide ligandMnO speciesOrganic oxidationLength halfWater moleculesObserved reactivityBond formationNucleophilic attackOxygen atomsKey intermediate
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply