2024
Prospective solutions to ovarian reserve damage during the ovarian tissue cryopreservation and transplantation procedure
Mercier A, Johnson J, Kallen A. Prospective solutions to ovarian reserve damage during the ovarian tissue cryopreservation and transplantation procedure. Fertility And Sterility 2024, 122: 565-573. PMID: 39181229, DOI: 10.1016/j.fertnstert.2024.08.330.Peer-Reviewed Original ResearchConceptsOvarian tissue cryopreservationPrimordial follicle growth activationOvarian reserve damageTissue cryopreservationLoss of primordial folliclesThawing protocolRestoration of ovarian functionTransplantation techniquesAmerican Society for Reproductive MedicineSusceptible to ischemic reperfusion injuryIschemic reperfusion injuryEfficacy of adjuvantsAssisted Reproductive TechnologyOvarian cortexPrimordial folliclesGonadotoxic treatmentOvarian reserveAdjuvant treatmentImmature folliclesLive birthsOvarian functionOvarian tissueSlow-freezing approachReperfusion injuryTransplant procedures
2023
Longitudinal biomarkers and kidney disease progression after acute kidney injury
Wen Y, Xu L, Melchinger I, Thiessen-Philbrook H, Moledina D, Coca S, Hsu C, Go A, Liu K, Siew E, Ikizler T, Chinchilli V, Kaufman J, Kimmel P, Himmelfarb J, Cantley L, Parikh C, Consortium T. Longitudinal biomarkers and kidney disease progression after acute kidney injury. JCI Insight 2023, 8: e167731. PMID: 36951957, PMCID: PMC10243801, DOI: 10.1172/jci.insight.167731.Peer-Reviewed Original ResearchConceptsAcute kidney injuryIschemic reperfusion injuryKidney disease progressionKidney injuryTubular healthDisease progressionChronic kidney disease (CKD) incidenceCox proportional hazards regressionMurine acute kidney injuryKidney disease incidenceUrine KIM-1Proportional hazards regressionCKD progressionCKD transitionUrine uromodulinIncident CKDComposite outcomeKidney atrophyProspective cohortReperfusion injuryHazards regressionKIM-1Prognostic valueMCP-1Initial insult
2007
Protection against myocardial ischemia-reperfusion injury by the angiogenic Masterswitch protein PR 39 gene therapy: the roles of HIF1alpha stabilization and FGFR1 signaling.
Muinck ED, Nagy N, Tirziu D, Murakami M, Gurusamy N, Goswami SK, Ghatpande S, Engelman RM, Simons M, Das DK. Protection against myocardial ischemia-reperfusion injury by the angiogenic Masterswitch protein PR 39 gene therapy: the roles of HIF1alpha stabilization and FGFR1 signaling. Antioxidants And Redox Signaling 2007, 9: 437-45. PMID: 17280485, DOI: 10.1089/ars.2006.1501.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsAntimicrobial Cationic PeptidesApoptosisBlotting, WesternCell LineGenetic TherapyHumansHypoxia-Inducible Factor 1, alpha SubunitIn Situ Nick-End LabelingMaleMalondialdehydeMiceMice, Inbred C57BLMutationMyocardial Reperfusion InjuryReactive Oxygen SpeciesReceptor, Fibroblast Growth Factor, Type 1Signal TransductionTime FactorsConceptsCoronary flowMyocardial ischemic reperfusion injuryMyocardial ischemia-reperfusion injuryEmpty vectorIschemia-reperfusion injuryIschemic reperfusion injuryLVdP/dtVentricular developed pressureMin of ischemiaBaseline coronary flowMyocardial infarct sizeGene therapyReperfusion injuryCardioprotective abilityInfarct sizeDeveloped pressureHIF-1alpha proteinTTC stainingAortic flowHeart rateCardiomyocyte apoptosisEx vivoCardioprotectionHIF1alpha stabilizationHemodynamics
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply