2025
Bayesian Longitudinal Network Regression With Application to Brain Connectome Genetics
Li C, Tian X, Gao S, Wang S, Wang G, Zhao Y, Zhao Y. Bayesian Longitudinal Network Regression With Application to Brain Connectome Genetics. Statistics In Medicine 2025, 44: e70069. PMID: 40277222, DOI: 10.1002/sim.70069.Peer-Reviewed Original ResearchConceptsSample relatednessLongitudinal genome-wide association studiesGenome-wide association studiesBrain imaging genetic studiesMultivariate phenotypesGenetic signalsImaging genetics studiesAssociation studiesGenetic studiesGenetic variantsGenetic underpinningsGenetic contributionGenetic effectsRelatednessAdolescent Brain Cognitive DevelopmentBrain functional connectivityFunctional organizationBiological architectureFunctional connectivityRobust inferenceGeneticsPhenotypeAnalytical challengesPosterior inferenceBrain network configuration
2024
Knowledge-guided learning methods for integrative analysis of multi-omics data
Li W, Ballard J, Zhao Y, Long Q. Knowledge-guided learning methods for integrative analysis of multi-omics data. Computational And Structural Biotechnology Journal 2024, 23: 1945-1950. PMID: 38736693, PMCID: PMC11087912, DOI: 10.1016/j.csbj.2024.04.053.Peer-Reviewed Original ResearchAnalysis of multi-omics dataIntegrative analysis of multi-omics dataMulti-omics dataMulti-omics data integration methodBiological knowledgeMulti-omics data integrationMulti-omics data analysisMulti-omics studiesIntegrated analysisFunctional genomicsFunctional proteomicsData integration methodsComplex diseasesMolecular mechanismsAlzheimer's diseaseComprehensive insightGenomeProteomicsGenesAnalytical challengesPathwayAlzheimer
2023
Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions
Okeme J, Koelmel J, Johnson E, Lin E, Gao D, Pollitt K. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Current Environmental Health Reports 2023, 10: 84-98. PMID: 36821032, DOI: 10.1007/s40572-023-00392-w.Peer-Reviewed Original ResearchConceptsPassive samplersOrganic chemicalsExposure assessmentHigh-throughput chemical analysisSemi-volatile organic chemicalsComplex mixturesChemical analysisEnvironmental health researchEnvironmental contaminantsPopulation scaleMonitoring approachActive air samplingQuantitative exposure assessmentEvaluation of exposureCompositional diversityAnalytical challengesHundreds of chemicalsPersonal exposurePopulation levelExposure estimatesSamplerActive samplersEnvironmental chemicalsContaminantsDynamic mixture
2017
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
Paulson J, Chen C, Lopes-Ramos C, Kuijjer M, Platig J, Sonawane A, Fagny M, Glass K, Quackenbush J. Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data. BMC Bioinformatics 2017, 18: 437. PMID: 28974199, PMCID: PMC5627434, DOI: 10.1186/s12859-017-1847-x.Peer-Reviewed Original ResearchConceptsRNA-seq data setsRNA-seqGenotype-Tissue ExpressionRNA-seq processingGenome-wide transcriptional profilingRNA-seq studiesRNA-seq dataGene filteringDownstream analysisRNA sequencingTranscriptional profilesDiverse tissuesAnalytical pipelineR packageQuality controlSignificant analytical challengeSoftware pipelineGenesRNAMulti-group studyNormalization stepAnalytical challengesResultsWeTissueExpressionUpdate on the State of the Science for Analytical Methods for Gene-Environment Interactions
Gauderman W, Mukherjee B, Aschard H, Hsu L, Lewinger J, Patel C, Witte J, Amos C, Tai C, Conti D, Torgerson D, Lee S, Chatterjee N. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions. American Journal Of Epidemiology 2017, 186: 762-770. PMID: 28978192, PMCID: PMC5859988, DOI: 10.1093/aje/kwx228.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesG x EGene-environment interactionsAssociation studiesAnalysis of gene-environment interactionsQuantitative trait studiesComplex traitsGenetic dataGene setsTrait studiesGene-environmentCase-controlEnvironmental dataConsortium settingFormation of consortiaGenesConsortiumAnalytical challengesTraitsSetsStudyInteractionStatistical approachData
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply