Post-Translational Regulation of a Bidomain Glycerol-3-Phosphate Dehydrogenase Catalyzing Glycerol Synthesis under Salinity Stress in Chlamydomonas reinhardtii
Cruz-Powell I, Subedi B, Kim Y, Morales-Sánchez D, Cerutti H. Post-Translational Regulation of a Bidomain Glycerol-3-Phosphate Dehydrogenase Catalyzing Glycerol Synthesis under Salinity Stress in Chlamydomonas reinhardtii. Phycology 2024, 4: 213-234. DOI: 10.3390/phycology4020012.Peer-Reviewed Original ResearchGlycerol-3-phosphate dehydrogenaseGlycerol-3-phosphate phosphataseGlycerol-3-phosphateGlycerol synthesisWild typeInhibitor of cytoplasmic protein synthesisPlastid-localized enzymeResponse of microalgaePost-translational regulationTransgenic strainsCytoplasmic protein synthesisSynthesis of glycerolHigh salinityExposure to high salinityCore chlorophytesInhibitors of protein kinasesChlamydomonas reinhardtiiGlycerol accumulationNutrient deprivationGPD2Protein kinaseProtein activityAccumulate glycerolSalt stressEnvironmental stress
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply