2025
Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection
Chan P, Li X, Li F, Emu B, Price R, Spudich S. Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection. Frontiers In Immunology 2025, 16: 1531828. PMID: 40070827, PMCID: PMC11893981, DOI: 10.3389/fimmu.2025.1531828.Peer-Reviewed Original ResearchConceptsCerebrospinal fluid HIV RNAPrimary HIV infectionT cell activationCD8+ T cell activationAntiretroviral therapyHIV RNACD4+HIV infectionCerebrospinal fluidT cellsMonocyte activationNeuronal injuryCD4+ T cell activationCD8<sup>+</sup> T cellsCD8+ T cellsFrequencies of activated CD4+ART-naive peopleChronic HIV infectionTrafficking of immune cellsAntiretroviral therapy initiationChemokine receptor expressionMultiparameter flow cytometryImmune cell activationSurface marker expressionCentral nervous system
2024
Circulating Biomarkers and CD8+ T-Cell Subpopulations Reveal Evolving Phases of Immune Response in Patients Receiving Mosunetuzumab for Previously Untreated B-Cell Lymphoma
Milrod C, Chorzalska A, Morgan J, Pardo M, Raker C, Ollila T, Lee S, Pelcovits A, Reagan J, McMahon J, Donnelly S, Carmody C, Margolis J, Matasar M, Huntington S, Dubielecka P, Olszewski A. Circulating Biomarkers and CD8+ T-Cell Subpopulations Reveal Evolving Phases of Immune Response in Patients Receiving Mosunetuzumab for Previously Untreated B-Cell Lymphoma. Blood 2024, 144: 1614-1614. DOI: 10.1182/blood-2024-193023.Peer-Reviewed Original ResearchCD8+ T cellsCD8+ T cell subsetsT cell activationEM CD8+ T cellsB-cell lymphomaT cell subsetsT cellsBsAb therapyComplete responseEffector memoryImmune responseCD8+ T cell activationT cell-engaging therapiesTreatment of B-cell lymphomaCentral memory T cellsT cell activation markersAlternative administration schedulesCD8+T cell activityLow-dose lenalidomidePrior chemotherapy exposureMarginal zone lymphomaT cell exhaustionT-cell engagersAnti-lymphoma activityMemory T cellsObesity induces PD-1 on macrophages to suppress anti-tumour immunity
Bader J, Wolf M, Lupica-Tondo G, Madden M, Reinfeld B, Arner E, Hathaway E, Steiner K, Needle G, Hatem Z, Landis M, Faneuff E, Blackman A, Wolf E, Cottam M, Ye X, Bates M, Smart K, Wang W, Pinheiro L, Christofides A, Smith D, Boussiotis V, Haake S, Beckermann K, Wellen K, Reinhart-King C, Serezani C, Lee C, Aubrey C, Chen H, Rathmell W, Hasty A, Rathmell J. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature 2024, 630: 968-975. PMID: 38867043, PMCID: PMC11456854, DOI: 10.1038/s41586-024-07529-3.Peer-Reviewed Original ResearchTumor-associated macrophagesPD-1 expressionInduced PD-1 expressionPD-1T cellsIncreased CD8+ T cell activationCD8+ T cell activationResponse to immune checkpoint blockade therapyT-cell stimulatory potentialTumor-associated macrophage expressionSuppress anti-tumor immunityImmune checkpoint blockade therapyObesity-cancer connectionPD-1 deficiencyAnti-PD-1PD-1 blockadePD-1 inhibitionAnti-tumor immunityCheckpoint blockade therapyTargeting PD-1Tumor immune surveillancePD-1 immunotherapyAntigen presentation capabilityMarkers of exhaustionExpression of CD86Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring
Sun J, Esplugues E, Bort A, Cardelo M, Ruz-Maldonado I, Fernández-Tussy P, Wong C, Wang H, Ojima I, Kaczocha M, Perry R, Suárez Y, Fernández-Hernando C. Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring. Nature Metabolism 2024, 6: 741-763. PMID: 38664583, DOI: 10.1038/s42255-024-01019-6.Peer-Reviewed Original ResearchConceptsFatty acid binding protein 5Tumor-associated macrophagesHepatocellular carcinomaImmunosuppressive phenotype of tumor-associated macrophagesIncreased CD8+ T cell activationCD8+ T cell activationPhenotype of tumor-associated macrophagesPro-inflammatory tumor microenvironmentCo-stimulatory molecules CD80T cell activationHepatocellular carcinoma burdenTransformation of hepatocytesBinding protein 5Potential therapeutic approachImmunosuppressive phenotypeTumor microenvironmentFerroptosis-induced cell deathMale miceEnhanced ferroptosisTherapeutic approachesPharmacological inhibitionGenetic ablationIncreased expressionSingle-cell atlasAnalysis of transformed cells
2022
CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor
Prokhnevska N, Cardenas M, Valanparambil R, Sobierajska E, Barwick B, Jansen C, Reyes Moon A, Gregorova P, delBalzo L, Greenwald R, Bilen M, Alemozaffar M, Joshi S, Cimmino C, Larsen C, Master V, Sanda M, Kissick H. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 2022, 56: 107-124.e5. PMID: 36580918, PMCID: PMC10266440, DOI: 10.1016/j.immuni.2022.12.002.Peer-Reviewed Original ResearchConceptsTumor-draining lymph nodesCD8<sup>+</sup> T cell activationT cell activationCD8<sup>+</sup> T cellsStem-like cellsT cellsCell activationEffector differentiationLymph nodesTumor-specific CD8<sup>+</sup> T cellsActivated CD8<sup>+</sup> T cellsAnti-tumor T cell responsesTumor-draining lymph node cellsCD8+ T cell activationCo-StimulationT cell responsesAntigen-presenting cellsMurine tumor modelsResponse to cancerEffector phenotypeTumor immunotherapyTumor modelTumorCell responsesAcute virusesEffect of concurrent beta-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors
Mellgard G, Patel V, Zhong X, Joshi H, Qin Q, Wang B, Parikh A, Jun T, Alerasool P, Garcia P, Gogerly-Moragoda M, Leiter A, Gallagher E, Oh W, Galsky M, Tsao C. Effect of concurrent beta-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors. Journal Of Cancer Research And Clinical Oncology 2022, 149: 2833-2841. PMID: 35788726, PMCID: PMC10739778, DOI: 10.1007/s00432-022-04159-y.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeClinical activity of immune checkpoint blockadeAdvanced solid tumorsOverall survivalT cell activationClinical outcomesSolid tumorsCD8+ T cell activationClinical activityClinical outcomes of patientsAdrenergic signalingAntitumor immune activityPharmacological beta-blockadeUrothelial carcinoma cohortImmune checkpoint inhibitorsInfluence overall survivalCox proportional hazards regression modelsDuration of therapyAssociation of OSOutcomes of patientsBeta-blocker useDisease control statusProportional hazards regression modelsBeta-adrenergic signalingInhibited tumor growth
2020
Effect of concurrent beta-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors.
Patel V, Qin Q, Wang B, Gogerly-Moragoda M, Mellgard G, Zhong X, Parikh A, Leiter A, Gallagher E, Oh W, Galsky M, Tsao C. Effect of concurrent beta-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors. Journal Of Clinical Oncology 2020, 38: e15068-e15068. DOI: 10.1200/jco.2020.38.15_suppl.e15068.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsDisease control rateClinical activity of immune checkpoint inhibitorsActivity of immune checkpoint inhibitorsAdvanced solid tumorsBeta blockersSolid tumorsCheckpoint inhibitorsDose of immune checkpoint inhibitorsCD8+ T cell activationClinical activityImproved disease control rateClinical outcomes of patientsAntitumor immune activityPharmacological beta-blockadeRadiographic complete responseEffects of beta blockersECOG performance statusLocation of metastasesOutcomes of patientsBeta-blocker useT cell activationInhibited tumor growthMultivariate logistic regression modelStable disease
2019
Effect of concurrent beta-blocker (BB) use in patients receiving immune checkpoint inhibitors for metastatic urothelial (mUC) and renal cell carcinomas (mRCC).
Patel V, Oh W, Galsky M, Liaw B, Tsao C. Effect of concurrent beta-blocker (BB) use in patients receiving immune checkpoint inhibitors for metastatic urothelial (mUC) and renal cell carcinomas (mRCC). Journal Of Clinical Oncology 2019, 37: 467-467. DOI: 10.1200/jco.2019.37.7_suppl.467.Peer-Reviewed Original ResearchCheckpoint inhibitorsDuration of therapyNon-BB groupBeta-blockersOverall survivalBB groupCD8+ T cell activationEfficacy of checkpoint inhibitorsPD-1/PD-L1 blockadePre-clinical mouse modelImmune checkpoint inhibitorsPharmacological beta-blockadeCheckpoint inhibitor therapyPD-1/PD-L1IRB-approved databaseSingle-center cohortResponse of immunotherapyOutcomes of patientsMolecular targeted therapyRenal cell carcinomaKaplan-Meier curvesT cell activationCox proportional hazards modelsGU cancer patientsProportional hazards model
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply