2024
Dependence of lymphopoiesis on efficient β-catenin degradation
Cosgun K, Jumaa H, Robinson M, Klemm L, Oulghazi S, Fonseca-Arce D, Xu L, Xiao G, Khanduja D, Chan L, Lee J, Kume K, Song J, Chan W, Chen J, Taketo M, Kothari S. Dependence of lymphopoiesis on efficient β-catenin degradation. The Journal Of Immunology 2024, 212: 1195_4936-1195_4936. DOI: 10.4049/jimmunol.212.supp.1195.4936.Peer-Reviewed Original ResearchIkaros zinc fingersLymphoid cellsB-cateninChIP-seq analysisSuppression of MYC expressionRegulate lineage specificationInduce cell deathConstitutively low levelsDeletion of ApcChIP-seqTCF factorsZinc fingerProteasomal degradationBinding motifNucleosome remodelingDestruction complexSpecific genesWnt/b-catenin pathwayLineage specificationCell deathMYC expressionSuperenhancersLymphoid developmentEpithelial lineageEpithelial cells
2023
LC3 conjugation to lipid droplets
Omrane M, Melia T, Thiam A. LC3 conjugation to lipid droplets. Autophagy 2023, 19: 3251-3253. PMID: 37599471, PMCID: PMC10621252, DOI: 10.1080/15548627.2023.2249390.Peer-Reviewed Original ResearchConceptsLipid dropletsResponse to different signalsDegradation of lipid dropletsUbiquitin-conjugating enzymeLong-term-starved cellsLC3-interacting regionArtificial lipid dropletsPatatin-like phospholipase domainMicrotubule-associated protein 1 light chain 3 betaFYVE domainTethering factorsE2 enzymesLIR motifLD surfaceZinc fingerEndoplasmic reticulumLipidated LC3BPerilipin 1Phospholipase domainAutophagosome formationAssembly platformPromote degradationProlonged starvationSequestosome 1ZFYVE1/DFCP1
2016
Analysis of Ikaros tumor suppressor function in BCR-ABL1+ pre-B ALL reveals conserved target genes and biological pathways
Schjerven H, Ayongaba E, McLaughlin J, Cheng D, Eggesbø L, Lindeman I, Park E, Witte O, Smale S, Frietze S, Muschen M. Analysis of Ikaros tumor suppressor function in BCR-ABL1+ pre-B ALL reveals conserved target genes and biological pathways. The Journal Of Immunology 2016, 196: 122.6-122.6. DOI: 10.4049/jimmunol.196.supp.122.6.Peer-Reviewed Original ResearchTumor suppressor functionTarget genesDevelopmental stage-specific expressionSuppressor functionB cell developmentStem cell signatureZinc fingerHematopoietic developmentIkaros DNAIkaros functionEarly hematopoietic progenitor cellsHematopoietic progenitor cellsRNA sequencingReceptor c-kitMultiple genesBiological functionsInducible expressionTumor suppressionTumor suppressorBiological pathwaysSpecific expressionAdhesion pathwayCritical regulatorIkarosGenes
2015
Ikaros tumor suppressor function in pre-B ALL: potential role of Ikaros target gene Ctnnd1 (IRM10P.621)
Schjerven H, Eggesbo L, Lindeman I, Muschen M. Ikaros tumor suppressor function in pre-B ALL: potential role of Ikaros target gene Ctnnd1 (IRM10P.621). The Journal Of Immunology 2015, 194: 131.19-131.19. DOI: 10.4049/jimmunol.194.supp.131.19.Peer-Reviewed Original ResearchTumor suppressor functionTarget genesSuppressor functionDNA-binding zinc fingersTumor suppressorGenome-wide expression analysisHuman preZinc finger transcription factorFinger transcription factorIndirect target genesDownstream target genesB cell developmentImportant tumor suppressorRole of IkarosProper hematopoiesisZinc fingerChIP-seqRNA-seqTranscription factorsPatient-derived preExpression analysisPotential roleIkarosGenesIkaros expression
2009
Klf4 Interacts Directly with Oct4 and Sox2 to Promote Reprogramming
Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, Lyu J, Chen X, Bai G, Liu C, Pera M, Lu W. Klf4 Interacts Directly with Oct4 and Sox2 to Promote Reprogramming. Stem Cells 2009, 27: 2969-2978. PMID: 19816951, DOI: 10.1002/stem.231.Peer-Reviewed Original ResearchConceptsInduced pluripotent stemEndogenous KLF4Sets of transcription factorsInduced pluripotent stem cellsTandem zinc fingerEmbryonic stemDominant negative mutantInduced iPS cellsMouse ES cellsSomatic cell reprogrammingWild-type Klf4Zinc fingerPluripotent stemTranscription factorsC-terminusIPS cellsInhibit reprogrammingEctopic expressionTarget genesNanog promoterSomatic cellsSOX2Cell reprogrammingES cellsKLF4
2008
The structural basis of integrin-linked kinase–PINCH interactions
Chiswell BP, Zhang R, Murphy JW, Boggon TJ, Calderwood DA. The structural basis of integrin-linked kinase–PINCH interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 20677-20682. PMID: 19074270, PMCID: PMC2634877, DOI: 10.1073/pnas.0811415106.Peer-Reviewed Original ResearchConceptsIntegrin-linked kinaseLIM1 domainGrowth factor signalingAtomic resolution descriptionILK bindingAnkyrin repeatsILK-PINCHHeterotrimeric complexZinc fingerMolecular basisMutagenesis dataStructural basisCell adhesionPoint mutationsConformational flexibilityKey interactionsParvinConvergence pointLim1DomainAnkyrinKinaseComplexesRepeatsSignaling
2005
Identification of Binding Sites of EVI1 in Mammalian Cells*
Yatsula B, Lin S, Read AJ, Poholek A, Yates K, Yue D, Hui P, Perkins AS. Identification of Binding Sites of EVI1 in Mammalian Cells*. Journal Of Biological Chemistry 2005, 280: 30712-30722. PMID: 16006653, DOI: 10.1074/jbc.m504293200.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBinding SitesDNADNA-Binding ProteinsHerpes Simplex Virus Protein Vmw65HumansMDS1 and EVI1 Complex Locus ProteinMiceMolecular Sequence DataMutagenesis, Site-DirectedMutation, MissenseNIH 3T3 CellsOligonucleotide Array Sequence AnalysisProtein ConformationProto-OncogenesRecombinant Fusion ProteinsTranscription FactorsZinc FingersConceptsChromatin immunoprecipitationTarget genesN-terminal DNAPutative target genesVP16 fusion proteinTranscription start siteN-terminal domainGel shift assaysNIH 3T3 cellsZFPM2/FOG2Transcriptional activatorEndogenous genesMissense mutantsEVI1 bindsZinc fingerMammalian cellsStart siteShift assaysMutant formsFusion proteinTransactivation studiesSequence analysisGenesEVI1Binding sites
1996
A Zinc-binding Domain Involved in the Dimerization of RAG1
Rodgers K, Bu Z, Fleming K, Schatz D, Engelman D, Coleman J. A Zinc-binding Domain Involved in the Dimerization of RAG1. Journal Of Molecular Biology 1996, 260: 70-84. PMID: 8676393, DOI: 10.1006/jmbi.1996.0382.Peer-Reviewed Original ResearchConceptsRecombination-activating gene 1Zinc-binding motifDimerization domainZinc fingerProtein-protein interactionsLymphoid-specific genesN-terminal thirdZinc finger sequencesAmino acid residuesC3HC4 motifRAG1 sequencesRAG1 proteinTerminal domainHomodimer formationAcid residuesBiophysical techniquesGene 1Energetics of associationMonomeric subunitsMotifProteinFinger sequencesSequenceC3HC4Zinc ions
1990
Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily.
Sladek F, Zhong W, Lai E, Darnell J. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes & Development 1990, 4: 2353-2365. PMID: 2279702, DOI: 10.1101/gad.4.12b.2353.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBinding SitesCell NucleusCloning, MolecularDNA-Binding ProteinsGene ExpressionHepatocyte Nuclear Factor 4LiverMacromolecular SubstancesMaleMolecular Sequence DataMultigene FamilyOligonucleotide ProbesPhosphoproteinsRatsRats, Inbred StrainsReceptors, SteroidRecombinant ProteinsSequence Homology, Nucleic AcidTranscription FactorsTranscription, GeneticConceptsSteroid hormone receptor superfamilyHNF-4 proteinHNF-4Hormone receptor superfamilyReceptor SuperfamilyTranscription factor HNF-4Regulation of transcriptionAmino acid sequencePyruvate kinase geneLigand-dependent transcription factorSequence-specific fashionDNA binding activityPolymerase chain reactionHNF-4 mRNANorthern blot analysisUnusual amino acidsLF-A1CDNA clonesActivate transcriptionBinding to sitesZinc fingerCotransfection assaysDNA bindingSynthetic oligonucleotidesTranscription factors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply