2022
Detecting regions of homozygosity improves the diagnosis of pathogenic variants and uniparental disomy in pediatric patients
Wen J, Chai H, Grommisch B, DiAdamo A, Dykas D, Ma D, Popa A, Zhao C, Spencer‐Manzon M, Jiang Y, McGrath J, Li P, Bale A, Zhang H. Detecting regions of homozygosity improves the diagnosis of pathogenic variants and uniparental disomy in pediatric patients. American Journal Of Medical Genetics Part A 2022, 188: 1728-1738. PMID: 35199448, DOI: 10.1002/ajmg.a.62693.Peer-Reviewed Original ResearchConceptsPediatric patientsWhole-exome sequencingCase seriesAR diseasesPathogenic variantsLarge consecutive case seriesConsecutive case seriesLarge case seriesUniparental disomyLikely pathogenic variantsRegions of homozygosityChromosomal microarray analysisAutosomal recessive diseasePrader-Willi syndromeDiagnostic findingsDiagnostic yieldPatientsPredictive valueGenetic testingHomozygous variantDiseaseExome sequencingRecessive diseaseGenetic counselingStrongest predictor
2020
Congenital ichthyosis in Prader–Willi syndrome associated with maternal chromosome 15 uniparental disomy: Case report and review of autosomal recessive conditions unmasked by UPD
Muthusamy K, Macke E, Klee E, Tebben P, Hand J, Hasadsri L, Marcou C, Schimmenti L. Congenital ichthyosis in Prader–Willi syndrome associated with maternal chromosome 15 uniparental disomy: Case report and review of autosomal recessive conditions unmasked by UPD. American Journal Of Medical Genetics Part A 2020, 182: 2442-2449. PMID: 32815268, DOI: 10.1002/ajmg.a.61792.Peer-Reviewed Case Reports and Technical NotesMeSH KeywordsAdolescentAdultAngelman SyndromeChildChild, PreschoolChromosomes, Human, Pair 15Congenital AbnormalitiesFemaleGenes, RecessiveGenomic ImprintingHumansIchthyosisIn Situ Hybridization, FluorescenceInfantInfant, NewbornMaternal InheritancePrader-Willi SyndromeSphingosine N-AcyltransferaseUniparental DisomyYoung AdultConceptsPrader-Willi syndromeAutosomal recessive congenital ichthyosisAutosomal recessive conditionPrader-Willi syndrome/Angelman syndromeCeramide synthase 3Congenital ichthyosisUniparental disomyPathogenic variantsPaternal 15q11-q13 deletionComplex chromosomal rearrangementsCase of autosomal recessive congenital ichthyosisNovel pathogenic variantsDiagnosis of Prader-Willi syndromeRecessive conditionRecessive inherited diseaseAutosomal recessive inherited diseaseChromosomal rearrangementsGenetic mechanismsImprinting defectsMaternal UPD15Prader-WilliClinical courseUPD15Case reportClinical phenotypeHeterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease
Zheng XZ, Qin XY, Chen SW, Wang P, Zhan Y, Zhong PP, Buza N, Jin YL, Wu BQ, Hui P. Heterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease. Modern Pathology 2020, 33: 1979-1988. PMID: 32404958, DOI: 10.1038/s41379-020-0566-4.Peer-Reviewed Original ResearchConceptsNon-molar gestationsGestational trophoblastic diseaseTrophoblastic diseaseHigh riskGestational trophoblastic neoplasiaProducts of conceptionPatient demographicsClinical followClinical outcomesGynecology HospitalTrophoblastic neoplasiaBeijing ObstetricsFIGO criteriaChinese patientsClinical prognosisPatient managementLarge cohortGestationMolar gestationDiseaseGenetic abnormalitiesChromosomal monosomyChromosomal aneuploidyHydatidiformUniparental disomy
2018
Aplastic anemia: Etiology, molecular pathogenesis, and emerging concepts
Shallis RM, Ahmad R, Zeidan AM. Aplastic anemia: Etiology, molecular pathogenesis, and emerging concepts. European Journal Of Haematology 2018, 101: 711-720. PMID: 30055055, DOI: 10.1111/ejh.13153.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAplastic anemiaMolecular pathogenesisDevelopment of AAStem cell injuryHematopoietic stem cell injuryT cell homeostasisTelomerase complex genesBone marrow failureLikely autoimmuneMarrow featuresPeripheral cytopeniasPathologic featuresPatient outcomesMonosomy 7Rare disorderAA pathogenesisCell injuryPathogenic mechanismsTrisomy 8Clonal diseaseCytogenetic abnormalitiesPathogenesisMarrow failureDiseaseUniparental disomy
2017
De novo paternal origin duplication of chromosome 11p15.5: report of two Chinese cases with Beckwith-Wiedemann syndrome
Wang Q, Geng Q, Zhou Q, Luo F, Li P, Xie J. De novo paternal origin duplication of chromosome 11p15.5: report of two Chinese cases with Beckwith-Wiedemann syndrome. Molecular Cytogenetics 2017, 10: 46. PMID: 29270226, PMCID: PMC5738159, DOI: 10.1186/s13039-017-0347-z.Peer-Reviewed Original ResearchBeckwith-Wiedemann syndromeMethylation profilingGenome-wide copy number analysisGain of methylationAberrant methylation patternsIntegrated molecular approachSingle gene mutationsCopy number analysisSegmental uniparental disomyMethylation patternsGenetic mechanismsChromosome 11p15.5Genetic analysisTelomeric endMicroarray analysisMolecular approachesMolecular etiologyDuplicationBWS patientsNumber changesUniparental disomyGenetic defectsChromosome microarray analysisNumber analysisPaternal origin
2011
Transfusion-Dependent Alpha-Spectrin Deficient Hemolytic Anemia Due to Maternal Uniparental Disomy
Bogardus H, Schulz V, Maksimova Y, Miller B, Forget B, Gallagher P. Transfusion-Dependent Alpha-Spectrin Deficient Hemolytic Anemia Due to Maternal Uniparental Disomy. Blood 2011, 118: 1030. DOI: 10.1182/blood.v118.21.1030.1030.Peer-Reviewed Original ResearchAlpha-spectrin geneArray comparative genomic hybridizationGene locusGenomic DNANonsense mutationUniparental disomyDeleterious recessive mutationsEntire human genomeMaternal uniparental disomyCultured erythroid cellsParental genomic DNARegions of homozygosityHuman genomeSingle chromosomeComparative genomic hybridizationMolecular basisSNP dataSPTA1 geneHomozygous nonsense mutationChromosome 1Erythroid cellsGene regionPromoter regionRecessive mutationsAnemia phenotype
2010
Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3
Jiang YH, Pan Y, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels J, Beaudet AL. Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3. PLOS ONE 2010, 5: e12278. PMID: 20808828, PMCID: PMC2924885, DOI: 10.1371/journal.pone.0012278.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAngelman SyndromeAnimalsCerebral CortexChromosome DeletionDarknessDisease Models, AnimalExploratory BehaviorFemaleGene Expression RegulationHomozygoteMaleMembrane Transport ProteinsMemoryMiceMothersMotor ActivityReceptors, GABA-ASeizuresUbiquitin-Protein LigasesUltrasonicsVocalization, AnimalConceptsLarge maternal deletionsDeletion miceMutant miceMouse modelAngelman syndrome mouse modelAngelman syndromeSpontaneous seizure activityMaternal deletionAS mouse modelGABRB3 geneWild-type littermatesSyndrome mouse modelE6-AP ubiquitinLight-dark boxDeletion mutant miceUBE3A mutationsUniparental disomyElectroencephalography (EEG) abnormalitiesAS patientsAbnormal EEGSeizure activityMotor functionPerinatal periodBalance disordersPaternal uniparental disomy
2004
EPIGENETICS AND HUMAN DISEASE
Jiang YH, Bressler J, Beaudet AL. EPIGENETICS AND HUMAN DISEASE. Annual Review Of Genomics And Human Genetics 2004, 5: 479-510. PMID: 15485357, DOI: 10.1146/annurev.genom.5.061903.180014.Peer-Reviewed Original ResearchConceptsHuman diseasesComplex disease traitsRole of epigeneticsHeritable changesChromatin structureGenomic imprintingDNA sequencesEpigenetic phenotypesDisease traitsGene expressionImprinting defectsGenetic scansBeckwith-Wiedemann syndromeGenesDisease phenotypeUniparental disomyDe novoEpigeneticsPhenotypeGenetic disordersExpressionChromatinEpimutationsTraitsMutations
1997
The E6–AP Ubiquitin–Protein Ligase (UBE3A) Gene Is Localized within a Narrowed Angelman Syndrome Critical Region
Sutcliffe J, Jiang Y, Galjaard R, Matsuura T, Fang P, Kubota T, Christian S, Bressler J, Cattanach B, Ledbetter D, Beaudet A. The E6–AP Ubiquitin–Protein Ligase (UBE3A) Gene Is Localized within a Narrowed Angelman Syndrome Critical Region. Genome Research 1997, 7: 368-377. PMID: 9110176, PMCID: PMC139148, DOI: 10.1101/gr.7.4.368.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAngelman SyndromeAnimalsBlotting, NorthernBlotting, SouthernChromosome AberrationsChromosome MappingChromosomes, Artificial, YeastChromosomes, Human, Pair 15Cloning, MolecularCosmidsElectrophoresis, Gel, Pulsed-FieldFemaleGene DeletionGene DosageGene Expression Regulation, DevelopmentalGenetic MarkersGenomic ImprintingHumansIn Situ HybridizationLigasesMaleMiceMice, Mutant StrainsMolecular Sequence DataPaternityPrader-Willi SyndromeSequence Homology, Amino AcidSequence Homology, Nucleic AcidTissue DistributionTranscription, GeneticTranslocation, GeneticUbiquitin-Protein LigasesConceptsLigase geneUbiquitin protein ligase geneAngelman syndromeEntire transcriptional unitCandidate regionsMaternal-specific expressionE6-AP ubiquitinTranscriptional unitsPaternal deficiencyRT-PCR analysisMouse homologPrader-Willi syndromePaternal uniparental disomyPhysical mapDe novo truncating mutationsNovo truncating mutationsRecent identificationUBE3A locusMouse tissuesGenesUbe3a expressionLociUniparental disomyProtein levelsAS region
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply