2023
Opportunities and challenges for ChatGPT and large language models in biomedicine and health
Tian S, Jin Q, Yeganova L, Lai P, Zhu Q, Chen X, Yang Y, Chen Q, Kim W, Comeau D, Islamaj R, Kapoor A, Gao X, Lu Z. Opportunities and challenges for ChatGPT and large language models in biomedicine and health. Briefings In Bioinformatics 2023, 25: bbad493. PMID: 38168838, PMCID: PMC10762511, DOI: 10.1093/bib/bbad493.Peer-Reviewed Original ResearchConceptsLarge language modelsLanguage modelSensitive patient dataBiomedical information retrievalText generation tasksInformation retrievalPrivacy concernsDomain expertsInformation extractionText summarizationBiomedical domainArt methodsDiverse applicationsPrevious stateBiomedical researchersGeneration taskPatient dataSuch methodsTaskDistinct complexityGeneration capabilityExtensive literature surveySummarizationRecent rapid progressChallengesImage Intensity Normalization Benefits Deep Learning Brain PET Motion Correction
Lieffrig E, Zhang J, Zeng T, Cai Z, You C, Lu Y, Onofrey J. Image Intensity Normalization Benefits Deep Learning Brain PET Motion Correction. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338194.Peer-Reviewed Original ResearchInput data normalizationImage intensity normalizationNeural network inputsMedical imaging researchPET motion correctionPre-processing stepMotion prediction errorMotion correctionIntensity normalizationNetwork inputsMotion predictionHead motion correctionInput dataTesting subjectsData normalizationEarly framesSuch methodsPrediction errorImaging researchDifferent normalization strategiesNormalization strategyMachineAlgorithmTaskValue analysisRobust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Stochastic Trajectories
Domingues T, Coifman R, Haji-Akbari A. Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Stochastic Trajectories. The Journal Of Physical Chemistry B 2023, 127: 5273-5287. PMID: 37261948, DOI: 10.1021/acs.jpcb.3c00670.Peer-Reviewed Original ResearchTime discretizationStochastic trajectoriesMechanical observablesDiffusivity tensorAnisotropic diffusivity tensorPointwise estimatesRigorous generalizationRobust estimationCovariance estimatorDifferent functional formsLocal covarianceKernel-based approachEstimatorFunctional estimatesDiscretizationFunctional formOrthogonal functionsBulk systemKernel functionConfined systemSuch methodsObservablesTensorTransport propertiesCovariance-based estimator
2021
Whole-cell organelle segmentation in volume electron microscopy
Heinrich L, Bennett D, Ackerman D, Park W, Bogovic J, Eckstein N, Petruncio A, Clements J, Pang S, Xu CS, Funke J, Korff W, Hess HF, Lippincott-Schwartz J, Saalfeld S, Weigel AV. Whole-cell organelle segmentation in volume electron microscopy. Nature 2021, 599: 141-146. PMID: 34616042, DOI: 10.1038/s41586-021-03977-3.Peer-Reviewed Original ResearchConceptsAutomatic reconstructionDeep learning architectureLearning architectureWeb repositoriesOpen dataAutomatic methodThree-dimensional reconstructionSuch methodsVolume electron microscopyQueriesSegmentationRepositoryArchitectureComputer codeSpatial interactionsDatasetReconstructionImagesMetricsCodeSuch reconstructions
2016
Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?
Foley F, Rajagopalan S, Raghunath SM, Boland JM, Karwoski RA, Maldonado F, Bartholmai BJ, Peikert T. Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging? Seminars In Thoracic And Cardiovascular Surgery 2016, 28: 120-126. PMID: 27568149, PMCID: PMC5003324, DOI: 10.1053/j.semtcvs.2015.12.015.Peer-Reviewed Original ResearchConceptsSoftware applicationsNodule assessmentCase stepsPostsurgical patient outcomesComputer-Aided Nodule AssessmentIdentification of nodulesIndividualized patient managementAdjunctive therapyRisk stratificationAggressive tumorsFuture of ImagingPatient outcomesIndividualized managementPatient managementLung adenocarcinomaSuch methodsRelevant diagnostic toolRadiological surveillanceLung nodulesClinical useNoninvasive toolResearch effortsIntrarater variabilityAdenocarcinomaSemiquantitative measure
2011
Power of Data Mining Methods to Detect Genetic Associations and Interactions
Molinaro AM, Carriero N, Bjornson R, Hartge P, Rothman N, Chatterjee N. Power of Data Mining Methods to Detect Genetic Associations and Interactions. Human Heredity 2011, 72: 85-97. PMID: 21934324, PMCID: PMC3222116, DOI: 10.1159/000330579.Peer-Reviewed Original ResearchConceptsMonte Carlo logic regressionRandom forestVariable importance measuresRF variable importance measuresData mining methodsComplex variable interactionsMining methodsTree-based methodsDimensionality reductionPrediction modelSuch methodsImportance measuresLogic regressionSimulation modelMultifactor dimensionality reductionData analysisVariable interactionsAlgorithmSimulation study
2002
Random Generation of Bayesian Networks
Ide J, Cozman F. Random Generation of Bayesian Networks. Lecture Notes In Computer Science 2002, 2507: 366-376. DOI: 10.1007/3-540-36127-8_35.Peer-Reviewed Original ResearchBayesian networkAcyclic graphConditional probability distributionNumber of arcsProbability distributionMarkov chainDirichlet distributionConditional distributionUniform generationNumber of nodesAverage propertiesRandom generationGraphNode degreeSuch networksSuch methodsAlgorithmNew methodNetworkDistributionTheoryInferenceConstraintsGuarantees
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply