2012
Gene Expression, Molecular Class Changes, and Pathway Analysis after Neoadjuvant Systemic Therapy for Breast Cancer
Gonzalez-Angulo AM, Iwamoto T, Liu S, Chen H, Do KA, Hortobagyi GN, Mills GB, Meric-Bernstam F, Symmans WF, Pusztai L. Gene Expression, Molecular Class Changes, and Pathway Analysis after Neoadjuvant Systemic Therapy for Breast Cancer. Clinical Cancer Research 2012, 18: 1109-1119. PMID: 22235097, PMCID: PMC3288822, DOI: 10.1158/1078-0432.ccr-11-2762.Peer-Reviewed Original ResearchConceptsResidual cancerBreast cancerAdjuvant treatment strategiesNeoadjuvant systemic therapyLike breast cancerBasal-like cancersSmall G proteinsCalmodulin-dependent protein kinase IICancer stem cell signaturesEnergy metabolismFine-needle aspiration specimensGene expression differencesEpithelial-mesenchymal transitionSonic hedgehog (Shh) signalingNeedle aspiration specimensProtein kinase IIImmune-related pathwaysNew therapeutic insightsGene expression dataStem cell signatureSonic hedgehog pathwaySystemic therapy
2008
Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer
Kimmelman A, Hezel A, Aguirre A, Zheng H, Paik J, Ying H, Chu G, Zhang J, Sahin E, Yeo G, Ponugoti A, Nabioullin R, Deroo S, Yang S, Wang X, McGrath J, Protopopova M, Ivanova E, Zhang J, Feng B, Tsao M, Redston M, Protopopov A, Xiao Y, Futreal P, Hahn W, Klimstra D, Chin L, DePinho R. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 19372-19377. PMID: 19050074, PMCID: PMC2614768, DOI: 10.1073/pnas.0809966105.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarcinoma, Pancreatic DuctalCell Line, TransformedCell MovementGene Expression Regulation, NeoplasticGenomicsHumansMiceMice, NudeNeoplasm Invasivenessp21-Activated KinasesPancreatic DuctsPancreatic NeoplasmsPhenotypeProtein Serine-Threonine KinasesProto-Oncogene Proteins c-aktrho GTP-Binding ProteinsSignal TransductionConceptsRIO kinase 3P21-activated kinase 4Amplified genesRho family GTP-binding proteinsRho family of GTPasesGenome wide surveyFamily of GTPasesSmall G proteinsGTP-binding proteinsRho familyRac signalingGenetic elementsCell motilityResident genesCytoskeletal architectureFocal amplificationGenomic instabilityInvasive phenotypePancreas ductal adenocarcinomaInvasive propensityGenomic alterationsCell migrationInvasive activityG-proteinRho
2005
Rho Proteins in Cell Migration and Metastasis
Titus B, Schwartz M, Theodorescu D. Rho Proteins in Cell Migration and Metastasis. Critical Reviews In Eukaryotic Gene Expression 2005, 15: 103-114. PMID: 16022631, DOI: 10.1615/critreveukaryotgeneexpr.v15.i2.20.Peer-Reviewed Original ResearchRho Proteins in Cell Migration and Metastasis
Titus B, Schwartz MA, Theodorescu D. Rho Proteins in Cell Migration and Metastasis. Critical Reviews In Eukaryotic Gene Expression 2005, 15: 103-114. DOI: 10.1615/critreveukargeneexpr.v15.i2.20.Peer-Reviewed Original Research
2002
Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils
Levchenko A, Iglesias P. Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils. Biophysical Journal 2002, 82: 50-63. PMID: 11751295, PMCID: PMC1302448, DOI: 10.1016/s0006-3495(02)75373-3.Peer-Reviewed Original ResearchConceptsPersistent signalingBiochemical signal transduction pathwaysSmall G proteinsChemotaxis of amoebaeSignal transduction pathwaysG protein activationEukaryotic cellsGradient sensingEukaryotic gradient sensingG proteinsCell typesSignal gradientExquisite precisionChemoattractant gradientPerfect adaptationSignalingAmoebaeActivatorPositive feedbackSensory systemsContinuous presenceAdaptationShallow gradientsChemoattractantInactivator
1999
Dishevelled Proteins Lead to Two Signaling Pathways REGULATION OF LEF-1 AND c-Jun N-TERMINAL KINASE IN MAMMALIAN CELLS*
Li L, Yuan H, Xie W, Mao J, Caruso A, McMahon A, Sussman D, Wu D. Dishevelled Proteins Lead to Two Signaling Pathways REGULATION OF LEF-1 AND c-Jun N-TERMINAL KINASE IN MAMMALIAN CELLS*. Journal Of Biological Chemistry 1999, 274: 129-134. PMID: 9867820, DOI: 10.1074/jbc.274.1.129.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAdaptor Proteins, Signal TransducingAnimalsbeta CateninCalcium-Calmodulin-Dependent Protein KinasesCell Cycle ProteinsCOS CellsCytoskeletal ProteinsDishevelled ProteinsDNA-Binding ProteinsEnzyme ActivationJNK Mitogen-Activated Protein KinasesLymphoid Enhancer-Binding Factor 1MiceMitogen-Activated Protein KinasesPhosphoproteinsSignal TransductionTrans-ActivatorsTranscription FactorsTranscription, GeneticUp-RegulationConceptsJNK activationMammalian cellsT-cell factorSmall G proteinsC-Jun N-terminal kinaseDominant negative mutantBeta-catenin levelsDifferent signaling pathwaysCOS-7 cellsN-terminal kinaseC-Jun NDishevelled proteinsDvl proteinsDEP domainDependent transcriptionNegative mutantPathway regulationKinase activityLEF-1Transcription activitySignaling pathwaysG proteinsNovel pathwayCell factorProtein
1998
ADP ribosylation factor regulates spectrin binding to the Golgi complex
Godi A, Santone I, Pertile P, Devarajan P, Stabach P, Morrow J, Di Tullio G, Polishchuk R, Petrucci T, Luini A, De Matteis M. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 8607-8612. PMID: 9671725, PMCID: PMC21123, DOI: 10.1073/pnas.95.15.8607.Peer-Reviewed Original ResearchConceptsADP-ribosylation factorGolgi complexRibosylation factorG proteinsVesicular stomatitis virus G proteinPleckstrin homology domainSmall G proteinsPH domain interactionBinding of spectrinVirus G proteinGolgi spectrinHomology domainPH domainCoat proteinDocking siteDomain interactionsGolgiEndoplasmic reticulumPtdInsP2 levelsDomain IPhospholipase DSpectrinGolgi fractionsProteinPtdInsP2
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply