2024
Gly-β-MCA is a potent anti-cholestasis agent against “human-like” hydrophobic bile acid-induced biliary injury in mice
Hasan M, Wang H, Luo W, Clayton Y, Gu L, Du Y, Palle S, Chen J, Li T. Gly-β-MCA is a potent anti-cholestasis agent against “human-like” hydrophobic bile acid-induced biliary injury in mice. Journal Of Lipid Research 2024, 65: 100649. PMID: 39306039, PMCID: PMC11526081, DOI: 10.1016/j.jlr.2024.100649.Peer-Reviewed Original ResearchUrsodeoxycholic acid treatmentUrsodeoxycholic acidPortal fibrosisHepatobiliary injuryClinically relevant dosesMuricholic acidsChronic liver diseaseBile acidsEndogenous bile acidsHydrophobic bile acidsPortal inflammationBile acid pool compositionLithocholic acidTherapeutic optionsBiliary injuryKO miceLine drugsBile acid pool sizeSerum transaminasesBile acid poolRelevant dosesDuctular reactionLiver diseaseCholestasisCholestasis model
2022
A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis
Chioccioli M, Roy S, Newell R, Pestano L, Dickinson B, Rigby K, Herazo-Maya J, Jenkins G, Ian S, Saini G, Johnson SR, Braybrooke R, Yu G, Sauler M, Ahangari F, Ding S, DeIuliis J, Aurelien N, Montgomery RL, Kaminski N. A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. EBioMedicine 2022, 85: 104304. PMID: 36265417, PMCID: PMC9587275, DOI: 10.1016/j.ebiom.2022.104304.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisNon-human primatesPulmonary fibrosisAnimal modelsPro-fibrotic genesAnti-fibrotic efficacyMiR-29 mimicsHuman peripheral bloodMiR-29b levelsHuman lung fibroblastsIPF patientsIPF diagnosisPeripheral bloodReduced fibrosisAdverse findingsPotential therapyLung slicesTGF-β1Relevant dosesLung fibroblastsNIH-NHLBIFibrosisTherapyCollagen productionProfibrotic gene programLet-7 underlies metformin-induced inhibition of hepatic glucose production
Xie D, Chen F, Zhang Y, Shi B, Song J, Chaudhari K, Yang SH, Zhang GJ, Sun X, Taylor HS, Li D, Huang Y. Let-7 underlies metformin-induced inhibition of hepatic glucose production. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2122217119. PMID: 35344434, PMCID: PMC9169108, DOI: 10.1073/pnas.2122217119.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAntidiabetic effectsMouse modelGlucose productionPotent antidiabetic actionsHepatocyte nuclear factor 4 alphaNuclear factor 4 alphaFunction mouse modelsHuman primary hepatocytesMetformin-induced inhibitionAntidiabetic actionTherapeutic effectGlucose homeostasisSuprapharmacological concentrationsRelevant dosesHepatic deliveryMetforminFetal isoformsPotential therapeuticsPrimary hepatocytesMost studiesLet-7Regulatory pathwaysHyperglycemiaDiabetes
2019
A single‐center, open‐label positron emission tomography study to evaluate brivaracetam and levetiracetam synaptic vesicle glycoprotein 2A binding in healthy volunteers
Finnema SJ, Rossano S, Naganawa M, Henry S, Gao H, Pracitto R, Maguire RP, Mercier J, Kervyn S, Nicolas J, Klitgaard H, DeBruyn S, Otoul C, Martin P, Muglia P, Matuskey D, Nabulsi NB, Huang Y, Kaminski RM, Hannestad J, Stockis A, Carson RE. A single‐center, open‐label positron emission tomography study to evaluate brivaracetam and levetiracetam synaptic vesicle glycoprotein 2A binding in healthy volunteers. Epilepsia 2019, 60: 958-967. PMID: 30924924, PMCID: PMC6532410, DOI: 10.1111/epi.14701.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, OralAnticonvulsantsCarbon RadioisotopesFemaleHealthy VolunteersHumansInhibitory Concentration 50Injections, IntravenousLevetiracetamMagnetic Resonance ImagingMaleMembrane GlycoproteinsNerve Tissue ProteinsNeuroimagingPositron-Emission TomographyProtein BindingPyrrolidinonesConceptsSynaptic vesicle glycoprotein 2AIntravenous brivaracetamHours postdoseBrain penetrationHealthy volunteersDaily oral dosingPositron emission tomography studyFurther clinical studiesEmission tomography studiesPlasma concentration relationshipPositron emission tomography (PET) tracerEmission tomography tracerVivo animal studiesAcute seizuresAntiepileptic drugsTherapeutic dosesCohort 2Oral dosingCohort 1Clinical studiesCohort 3LevetiracetamAnimal studiesRelevant dosesBrivaracetam
2015
Dexmedetomidine Does Not Affect Evoked Potentials During Spine Surgery
Rozet I, Metzner J, Brown M, Treggiari MM, Slimp JC, Kinney G, Sharma D, Lee LA, Vavilala MS. Dexmedetomidine Does Not Affect Evoked Potentials During Spine Surgery. Anesthesia & Analgesia 2015, 121: 492-501. PMID: 26097987, DOI: 10.1213/ane.0000000000000840.Peer-Reviewed Original ResearchMeSH KeywordsAnesthesia, IntravenousAnesthetics, IntravenousDexmedetomidineDouble-Blind MethodEvoked PotentialsEvoked Potentials, MotorEvoked Potentials, SomatosensoryEvoked Potentials, VisualFemaleHumansHypnotics and SedativesIntraoperative Neurophysiological MonitoringMaleMiddle AgedOrthopedic ProceduresPiperidinesPropofolReaction TimeRemifentanilSpineTime FactorsConceptsEffect of dexmedetomidineVisual EPsSpine surgeryEnd pointElective spine surgeryPlacebo-controlled trialPrimary end pointSecondary end pointsLatency N1Motor EPsPlacebo groupStudy drugAdult patientsNormal salineLatency P1DexmedetomidineSomatosensory EPsIRB approvalRelevant dosesEP recordingInformed consentPatientsSurgeryEvoked PotentialsAnesthesia
2013
Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD
Ding YS, Naganawa M, Gallezot JD, Nabulsi N, Lin SF, Ropchan J, Weinzimmer D, McCarthy TJ, Carson RE, Huang Y, Laruelle M. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. NeuroImage 2013, 86: 164-171. PMID: 23933039, DOI: 10.1016/j.neuroimage.2013.08.001.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic Uptake InhibitorsAnimalsAtomoxetine HydrochlorideAttention Deficit Disorder with HyperactivityBrainDepressionDose-Response Relationship, DrugMacaca mulattaNorepinephrine Plasma Membrane Transport ProteinsPositron-Emission TomographyPropylaminesSerotonin Plasma Membrane Transport ProteinsTissue DistributionConceptsTreatment of depressionNorepinephrine transporterComparative PET imaging studyMetabolite-corrected arterial input functionFinal infusion rateDoses of atomoxetineDose-dependent occupancyPET imaging studiesSelective serotonin transporter (SERT) ligandNon-human primatesPlasma levelsSelective blockadeSaline infusionClinical dosesTherapeutic effectInfusion rateRelevant dosePET scansAtomoxetineRelevant dosesSerotonin transporter ligandDistribution volumeImaging studiesRhesus monkeysArterial input function
2010
Clinically Relevant Doses of Methylphenidate Significantly Occupy Norepinephrine Transporters in Humans In Vivo
Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, Malison RT, Carson RE, Ding YS. Clinically Relevant Doses of Methylphenidate Significantly Occupy Norepinephrine Transporters in Humans In Vivo. Biological Psychiatry 2010, 68: 854-860. PMID: 20691429, PMCID: PMC3742016, DOI: 10.1016/j.biopsych.2010.06.017.Peer-Reviewed Original ResearchConceptsAttention-deficit/hyperactivity disorderNET-rich regionsPositron emission tomographyNorepinephrine transporterDopamine transporterHyperactivity disorderRelevant dosesEmission tomographySingle-blind placeboMultilinear reference tissue modelEffective dose 50Attention deficit hyperactivity disorderDose-dependent mannerMechanism of actionDeficit hyperactivity disorderBrain norepinephrine transportersReference tissue modelMaintenance doseOral methylphenidateHealthy subjectsTherapeutic effectOccipital cortexCommon treatmentPsychiatric disordersMethylphenidate
2000
Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin.
Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, D’Andrea G, Seidman A, Norton L, Gunnett K, Falcey J, Anderson V, Waksal H, Mendelsohn J. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. Journal Of Clinical Oncology 2000, 18: 904-14. PMID: 10673534, DOI: 10.1200/jco.2000.18.4.904.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedAntineoplastic AgentsArea Under CurveCarcinoma, Non-Small-Cell LungCarcinoma, Squamous CellCetuximabCisplatinDose-Response Relationship, DrugDrug Administration ScheduleErbB ReceptorsFemaleGene Expression Regulation, NeoplasticHead and Neck NeoplasmsHumansInfusions, IntravenousLung NeoplasmsMaleNeoplasms, Glandular and EpithelialRecombinant Fusion ProteinsRemission InductionSafetyConceptsAntibody dosesMultiple doseSystemic clearancePhase I clinical trialWeeks of therapyDose-dependent pharmacokineticsCell lung cancerChimeric monoclonal antibodyCoadministration of cisplatinEpidermal growth factor receptorMurine chimeric monoclonal antibodyGrowth factor receptorDisease stabilizationPartial responseAdvanced tumorsSingle doseLung cancerClinical trialsDisease progressionEpithelial tumorsNonlinear pharmacokineticsPatientsDose levelsAntibody C225Relevant doses
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply