2020
Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring
Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020, 161: bqaa164. PMID: 32926169, PMCID: PMC7609133, DOI: 10.1210/endocr/bqaa164.Peer-Reviewed Original ResearchConceptsUtero exposureLocomotor activityUtero bisphenol A (BPA) exposureBisphenol A (BPA) exposureSignificant decreaseAnxiety-like behaviorDeclarative memory impairmentSex-specific mannerA ExposureFemale miceMale miceBPA exposureRelevant doseMotor coordinationMouse modelMurine behaviourControl animalsNeurobehavioral functionBPA treatmentLocomotor deficitsMemory impairmentOlder ageBrain developmentLong-term memoryBrain gene expression
2016
Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol‐A) exposure
Jorgensen EM, Alderman MH, Taylor HS. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol‐A) exposure. The FASEB Journal 2016, 30: 3194-3201. PMID: 27312807, PMCID: PMC5001514, DOI: 10.1096/fj.201500089r.Peer-Reviewed Original ResearchConceptsEstrogen responseSubsequent gene expressionGene expressionXenoestrogen exposureBPA exposureEpigenetic programmingUtero BPA exposurePrenatal BPA exposureRisk of estrogenMajority of genesNormal developmental programmingFemale reproductive disordersCpG methylation patternsCpG methylation profilesEstrogen-responsive gene expressionUterine DNAEstrogen-responsive genesEndometrial hyperplasiaUtero exposurePregnant miceEtiological factorsBreast cancerEstrogen receptorMethylation patternsRelevant dose
2015
Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse
Korpi E, Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt D, Hyytiä P, Dawe G, Koulu M. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacological Reviews 2015, 67: 872-1004. PMID: 26403687, DOI: 10.1124/pr.115.010967.Peer-Reviewed Original ResearchMeSH KeywordsAlcoholismalpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAmphetaminesAnimalsBehavior, AddictiveBenzodiazepinesBrainCannabinoidsCocaineDepressionDose-Response Relationship, DrugGene ExpressionHallucinogensHumansIllicit DrugsNarcoticsNerve Growth FactorsNeuroimagingNeuronal PlasticityNicotineReceptors, N-Methyl-D-AspartateReceptors, NicotinicSubstance-Related DisordersSynaptic TransmissionConceptsDrugs of abuseAdolescent drug exposureStress-induced reinstatementBehavioral changesBrain processesDrug seekingCognitive alterationsRecreational drug usersAbuseNeuroplasticityNeuropsychiatric illnessAddictionVentral tegmental areaAppropriate responseAdministration of drugsRegion-specific changesBrain cell populationsMechanism of actionDrug intakeDopamine neuronsDrug exposureTegmental areaRelevant doseDrug effectsCues
2013
Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD
Ding YS, Naganawa M, Gallezot JD, Nabulsi N, Lin SF, Ropchan J, Weinzimmer D, McCarthy TJ, Carson RE, Huang Y, Laruelle M. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. NeuroImage 2013, 86: 164-171. PMID: 23933039, DOI: 10.1016/j.neuroimage.2013.08.001.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic Uptake InhibitorsAnimalsAtomoxetine HydrochlorideAttention Deficit Disorder with HyperactivityBrainDepressionDose-Response Relationship, DrugMacaca mulattaNorepinephrine Plasma Membrane Transport ProteinsPositron-Emission TomographyPropylaminesSerotonin Plasma Membrane Transport ProteinsTissue DistributionConceptsTreatment of depressionNorepinephrine transporterComparative PET imaging studyMetabolite-corrected arterial input functionFinal infusion rateDoses of atomoxetineDose-dependent occupancyPET imaging studiesSelective serotonin transporter (SERT) ligandNon-human primatesPlasma levelsSelective blockadeSaline infusionClinical dosesTherapeutic effectInfusion rateRelevant dosePET scansAtomoxetineRelevant dosesSerotonin transporter ligandDistribution volumeImaging studiesRhesus monkeysArterial input function
1996
Tyrosine enhances behavioral and mesocorticolimbic dopaminergic responses to aversive conditioning
Morrow B, Elsworth J, Roth R. Tyrosine enhances behavioral and mesocorticolimbic dopaminergic responses to aversive conditioning. Synapse 1996, 22: 100-105. PMID: 8787125, DOI: 10.1002/(sici)1098-2396(199602)22:2<100::aid-syn2>3.0.co;2-h.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexDopamine metabolismNucleus accumbensNonconditioned controlsPrefrontal cortexDopamine utilizationAdministration of haloperidolExogenous tyrosineBiosynthesis of catecholaminesDopaminergic responseDietary tyrosineRelevant doseAccumbensRatsTyrosine hydroxylationCortexGreater elevationNonconditioned ratsB-carbolineSaline/Test dayMetabolismBehavioral consequencesAversive conditioningTone
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply