2024
Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD+ at 3 T
Mevenkamp J, Bruls Y, Mancilla R, Grevendonk L, Wildberger J, Brouwers K, Hesselink M, Schrauwen P, Hoeks J, Houtkooper R, Buitinga M, de Graaf R, Lindeboom L, Schrauwen-Hinderling V. Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD+ at 3 T. Nature Communications 2024, 15: 9159. PMID: 39443469, PMCID: PMC11499639, DOI: 10.1038/s41467-024-53292-4.Peer-Reviewed Original ResearchConceptsPhysically active older adultsActive older adultsMetabolic healthHuman skeletal musclePhosphorous magnetic resonance spectroscopySedentary individualsOlder adultsStimulate mitochondrial biogenesisHealthSkeletal muscleMitochondrial biogenesisNAD+Physiological decreaseNADH contentNADHQuantify NADHClinical 3Magnetic resonance spectroscopy techniquesMR sequencesAdultsMeasurement reproducibility
2020
Contribution of macromolecules to brain 1H MR spectra: Experts' consensus recommendations
Cudalbu C, Behar KL, Bhattacharyya PK, Bogner W, Borbath T, de Graaf R, Gruetter R, Henning A, Juchem C, Kreis R, Lee P, Lei H, Marjańska M, Mekle R, Murali‐Manohar S, Považan M, Rackayová V, Simicic D, Slotboom J, Soher BJ, Starčuk Z, Starčuková J, Tkáč I, Williams S, Wilson M, Wright AM, Xin L, Mlynárik V. Contribution of macromolecules to brain 1H MR spectra: Experts' consensus recommendations. NMR In Biomedicine 2020, 34: e4393. PMID: 33236818, PMCID: PMC10072289, DOI: 10.1002/nbm.4393.Peer-Reviewed Original Research
2018
Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo
De Feyter HM, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, Nixon TW, Rothman DL, de Graaf RA. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Science Advances 2018, 4: eaat7314. PMID: 30140744, PMCID: PMC6105304, DOI: 10.1126/sciadv.aat7314.Peer-Reviewed Original ResearchConceptsOral intakeMetabolic imagingGlucose uptakeHigh-grade brain tumorsRat glioma modelPositron emission tomography (PET) detectionSimilar metabolic patternMetabolic imaging techniquesDeuterium metabolic imagingHigher glucose uptakeGlucose analog 2FDG-PETF-fluoroIntravenous infusionBrain tumorsGlioma modelGlucose metabolismNormal brainTomography detectionAnimal modelsMagnetic resonance spectroscopicTumor tissueHuman liverMetabolic patternsNoninvasive approach
2017
Measurement of lipid composition in human skeletal muscle and adipose tissue with 1H‐MRS homonuclear spectral editing
Lindeboom L, de Graaf R. Measurement of lipid composition in human skeletal muscle and adipose tissue with 1H‐MRS homonuclear spectral editing. Magnetic Resonance In Medicine 2017, 79: 619-627. PMID: 28474367, DOI: 10.1002/mrm.26740.Peer-Reviewed Original ResearchConceptsAdipose tissueProton magnetic resonance spectroscopySkeletal muscleH-MRSAccumulation of triglyceridesInvasive biopsyMetabolic derangementsEctopic fatInsulin resistanceCardiovascular diseaseMetabolic diseasesMEGA-sLASER sequenceIn vivoNonadipose tissuesLipid resonancesSpectral editingPolyunsaturated fatty acidsHuman skeletal muscleMagnetic resonance spectroscopyLipid storesLipid compositionAdiposeSpectral resolutionTissuePhantom experiments
2016
Detection of cerebral NAD+ in humans at 7T
de Graaf R, De Feyter H, Brown PB, Nixon TW, Rothman DL, Behar KL. Detection of cerebral NAD+ in humans at 7T. Magnetic Resonance In Medicine 2016, 78: 828-835. PMID: 27670385, PMCID: PMC5366282, DOI: 10.1002/mrm.26465.Peer-Reviewed Original Research