2024
Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD+ at 3 T
Mevenkamp J, Bruls Y, Mancilla R, Grevendonk L, Wildberger J, Brouwers K, Hesselink M, Schrauwen P, Hoeks J, Houtkooper R, Buitinga M, de Graaf R, Lindeboom L, Schrauwen-Hinderling V. Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD+ at 3 T. Nature Communications 2024, 15: 9159. PMID: 39443469, PMCID: PMC11499639, DOI: 10.1038/s41467-024-53292-4.Peer-Reviewed Original ResearchConceptsPhysically active older adultsActive older adultsMetabolic healthHuman skeletal musclePhosphorous magnetic resonance spectroscopySedentary individualsOlder adultsStimulate mitochondrial biogenesisHealthSkeletal muscleMitochondrial biogenesisNAD+Physiological decreaseNADH contentNADHQuantify NADHClinical 3Magnetic resonance spectroscopy techniquesMR sequencesAdultsMeasurement reproducibility
2020
ECLIPSE utilizing gradient‐modulated offset‐independent adiabaticity (GOIA) pulses for highly selective human brain proton MRSI
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf R. ECLIPSE utilizing gradient‐modulated offset‐independent adiabaticity (GOIA) pulses for highly selective human brain proton MRSI. NMR In Biomedicine 2020, 34: e4415. PMID: 33001485, PMCID: PMC9472321, DOI: 10.1002/nbm.4415.Peer-Reviewed Original Research
2018
Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo
De Feyter HM, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, Nixon TW, Rothman DL, de Graaf RA. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Science Advances 2018, 4: eaat7314. PMID: 30140744, PMCID: PMC6105304, DOI: 10.1126/sciadv.aat7314.Peer-Reviewed Original ResearchConceptsOral intakeMetabolic imagingGlucose uptakeHigh-grade brain tumorsRat glioma modelPositron emission tomography (PET) detectionSimilar metabolic patternMetabolic imaging techniquesDeuterium metabolic imagingHigher glucose uptakeGlucose analog 2FDG-PETF-fluoroIntravenous infusionBrain tumorsGlioma modelGlucose metabolismNormal brainTomography detectionAnimal modelsMagnetic resonance spectroscopicTumor tissueHuman liverMetabolic patternsNoninvasive approachMinimum echo time PRESS‐based proton observed carbon edited (POCE) MRS in rat brain using simultaneous editing and localization pulses
Kumaragamage C, Madularu D, Mathieu AP, Lupinsky D, de Graaf R, Near J. Minimum echo time PRESS‐based proton observed carbon edited (POCE) MRS in rat brain using simultaneous editing and localization pulses. Magnetic Resonance In Medicine 2018, 80: 1279-1288. PMID: 29427395, DOI: 10.1002/mrm.27119.Peer-Reviewed Original Research
2017
Selective proton‐observed, carbon‐edited (selPOCE) MRS method for measurement of glutamate and glutamine 13C‐labeling in the human frontal cortex
De Feyter H, Herzog RI, Steensma BR, Klomp DWJ, Brown PB, Mason GF, Rothman DL, de Graaf R. Selective proton‐observed, carbon‐edited (selPOCE) MRS method for measurement of glutamate and glutamine 13C‐labeling in the human frontal cortex. Magnetic Resonance In Medicine 2017, 80: 11-20. PMID: 29134686, PMCID: PMC5876108, DOI: 10.1002/mrm.27003.Peer-Reviewed Original ResearchMeasurement of lipid composition in human skeletal muscle and adipose tissue with 1H‐MRS homonuclear spectral editing
Lindeboom L, de Graaf R. Measurement of lipid composition in human skeletal muscle and adipose tissue with 1H‐MRS homonuclear spectral editing. Magnetic Resonance In Medicine 2017, 79: 619-627. PMID: 28474367, DOI: 10.1002/mrm.26740.Peer-Reviewed Original ResearchConceptsAdipose tissueProton magnetic resonance spectroscopySkeletal muscleH-MRSAccumulation of triglyceridesInvasive biopsyMetabolic derangementsEctopic fatInsulin resistanceCardiovascular diseaseMetabolic diseasesMEGA-sLASER sequenceIn vivoNonadipose tissuesLipid resonancesSpectral editingPolyunsaturated fatty acidsHuman skeletal muscleMagnetic resonance spectroscopyLipid storesLipid compositionAdiposeSpectral resolutionTissuePhantom experiments
2016
Detection of cerebral NAD+ in humans at 7T
de Graaf R, De Feyter H, Brown PB, Nixon TW, Rothman DL, Behar KL. Detection of cerebral NAD+ in humans at 7T. Magnetic Resonance In Medicine 2016, 78: 828-835. PMID: 27670385, PMCID: PMC5366282, DOI: 10.1002/mrm.26465.Peer-Reviewed Original Research
2014
Detection of cerebral NAD+ by in vivo 1H NMR spectroscopy
de Graaf R, Behar KL. Detection of cerebral NAD+ by in vivo 1H NMR spectroscopy. NMR In Biomedicine 2014, 27: 802-809. PMID: 24831866, PMCID: PMC4459131, DOI: 10.1002/nbm.3121.Peer-Reviewed Original Research
2012
In vivo MRS and histochemistry of status epilepticus‐induced hippocampal pathology in a juvenile model of temporal lobe epilepsy
van der Hel W, van Eijsden P, Bos IW, de Graaf R, Behar KL, van Nieuwenhuizen O, de Graan P, Braun KP. In vivo MRS and histochemistry of status epilepticus‐induced hippocampal pathology in a juvenile model of temporal lobe epilepsy. NMR In Biomedicine 2012, 26: 132-140. PMID: 22806932, DOI: 10.1002/nbm.2828.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyStatus epilepticusSynthase immunoreactivityNeuronal lossHippocampal pathologyLobe epilepsyDevelopment of TLECholine-containing compound concentrationsChildhood status epilepticusPre-epileptic stateSpontaneous recurrent seizuresVivo MRSJuvenile rat modelHippocampal injuryChronic epilepsyRecurrent seizuresSpontaneous seizuresNeurotransmitter imbalanceParvalbumin immunoreactivityVivo immunohistochemistryInhibitory neurotransmissionΓ-aminobutyric acidEpileptogenic processMRS findingsNeuronal death
2011
Dynamic multi-coil shimming of the human brain at 7T
Juchem C, Nixon TW, McIntyre S, Boer VO, Rothman DL, de Graaf RA. Dynamic multi-coil shimming of the human brain at 7T. Journal Of Magnetic Resonance 2011, 212: 280-288. PMID: 21824794, PMCID: PMC3183127, DOI: 10.1016/j.jmr.2011.07.005.Peer-Reviewed Original Research
2009
In situ 3D magnetic resonance metabolic imaging of microwave‐irradiated rodent brain: a new tool for metabolomics research
De Graaf RA, Chowdhury GM, Brown PB, Rothman DL, Behar KL. In situ 3D magnetic resonance metabolic imaging of microwave‐irradiated rodent brain: a new tool for metabolomics research. Journal Of Neurochemistry 2009, 109: 494-501. PMID: 19200336, PMCID: PMC2843429, DOI: 10.1111/j.1471-4159.2009.05967.x.Peer-Reviewed Original Research
2003
Coupling of Glutamatergic Neurotransmission and Neuronal Glucose Oxidation over the Entire Range of Cerebral Cortex Activity
PATEL AB, DE GRAAF R, MASON GF, ROTHMAN DL, SHULMAN RG, BEHAR KL. Coupling of Glutamatergic Neurotransmission and Neuronal Glucose Oxidation over the Entire Range of Cerebral Cortex Activity. Annals Of The New York Academy Of Sciences 2003, 1003: 452-453. PMID: 14684486, DOI: 10.1196/annals.1300.050.Peer-Reviewed Original Research
2001
Detection of γ-Aminobutyric Acid (GABA) by Longitudinal Scalar Order Difference Editing
de Graaf R, Rothman D. Detection of γ-Aminobutyric Acid (GABA) by Longitudinal Scalar Order Difference Editing. Journal Of Magnetic Resonance 2001, 152: 124-131. PMID: 11531371, DOI: 10.1006/jmre.2001.2371.Peer-Reviewed Original ResearchDifferentiation of Glucose Transport in Human Brain Gray and White Matter
de Graaf R, Pan J, Telang F, Lee J, Brown P, Novotny E, Hetherington H, Rothman D. Differentiation of Glucose Transport in Human Brain Gray and White Matter. Cerebrovascular And Brain Metabolism Reviews 2001, 21: 483-492. PMID: 11333358, DOI: 10.1097/00004647-200105000-00002.Peer-Reviewed Original ResearchConceptsKinetic transport modelSpectroscopic measurementsStandard modelTransport modelHuman brain grayNuclear magnetic resonance spectroscopic measurementsStandard transport modelMagnetic resonance spectroscopic measurementsThreefold lower rateNuclear magnetic resonance spectroscopyResonance spectroscopyHuman brain gray matterMagnetic resonance spectroscopyMatterVolume compositionSpectroscopyWhite matter levelsMeasurementsSingle‐shot diffusion trace 1H NMR spectroscopy
de Graaf R, Braun K, Nicolay K. Single‐shot diffusion trace 1H NMR spectroscopy. Magnetic Resonance In Medicine 2001, 45: 741-748. PMID: 11323799, DOI: 10.1002/mrm.1101.Peer-Reviewed Original Research
2000
In Vivo 31P-NMR Diffusion Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Muscle
de Graaf R, van Kranenburg A, Nicolay K. In Vivo 31P-NMR Diffusion Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Muscle. Biophysical Journal 2000, 78: 1657-1664. PMID: 10733948, PMCID: PMC1300762, DOI: 10.1016/s0006-3495(00)76717-8.Peer-Reviewed Original Research
1999
Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by 1H‐magnetization transfer MRS
Kruiskamp M, de Graaf R, van Vliet G, Nicolay K. Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by 1H‐magnetization transfer MRS. Magnetic Resonance In Medicine 1999, 42: 665-672. PMID: 10502754, DOI: 10.1002/(sici)1522-2594(199910)42:4<665::aid-mrm7>3.0.co;2-9.Peer-Reviewed Original ResearchOff‐resonance metabolite magnetization transfer measurements on rat brain in situ
de Graaf R, van Kranenburg A, Nicolay K. Off‐resonance metabolite magnetization transfer measurements on rat brain in situ. Magnetic Resonance In Medicine 1999, 41: 1136-1144. PMID: 10371445, DOI: 10.1002/(sici)1522-2594(199906)41:6<1136::aid-mrm9>3.0.co;2-g.Peer-Reviewed Original ResearchSpatial Assessment of the Dynamics of Lactate Formation in Focal Ischemic Rat Brain
Dijkhuizen R, de Graaf R, Garwood M, Tulleken K, Nicolay K. Spatial Assessment of the Dynamics of Lactate Formation in Focal Ischemic Rat Brain. Cerebrovascular And Brain Metabolism Reviews 1999, 19: 376-379. PMID: 10197507, DOI: 10.1097/00004647-199904000-00003.Peer-Reviewed Original ResearchConceptsFocal cerebral ischemiaCerebral ischemiaFocal ischemic rat brainAcute focal cerebral ischemiaIschemic rat brainMagnetic resonance spectroscopic imaging techniquesTherapeutic intervention strategiesBorderzone areasIschemic penumbraIschemic coreSalvageable penumbraLactate formationRat modelRat brainEarly identificationIschemiaViable tissueIntervention strategiesInfusionPenumbraImaging techniquesLactateEnrichment of lactateIn vivo observation of lactate methyl proton magnetization transfer in rat C6 glioma
Luo Y, Rydzewski J, de Graaf R, Gruetter R, Garwood M, Schleich T. In vivo observation of lactate methyl proton magnetization transfer in rat C6 glioma. Magnetic Resonance In Medicine 1999, 41: 676-685. PMID: 10332842, DOI: 10.1002/(sici)1522-2594(199904)41:4<676::aid-mrm5>3.0.co;2-d.Peer-Reviewed Original Research