2022
Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice
Gaspar R, Lyu K, Hubbard B, Leitner B, Luukkonen P, Hirabara S, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline G, Pauli J, Perry R, Petersen K, Shulman G. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2022, 66: 567-578. PMID: 36456864, PMCID: PMC11194860, DOI: 10.1007/s00125-022-05838-8.Peer-Reviewed Original ResearchConceptsProtein kinase CsSubcellular compartmentsDistinct subcellular localisationMuscle insulin sensitivityMultiple subcellular compartmentsInsulin receptor kinaseNovel protein kinase CsActivation of PKCεSubcellular localisationPKCθ translocationReceptor kinasePlasma membraneSubcellular distributionTriacylglycerol contentCrucial pathwaysIntramuscular triacylglycerol contentRC miceDiacylglycerolConclusions/interpretationThese resultsPKCεPM compartmentPhosphorylationMuscle triacylglycerol contentSkeletal muscleRecent findings
2019
Hepatic insulin sensitivity is improved in high‐fat diet‐fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis
Edmunds LR, Huckestein BR, Kahn M, Zhang D, Chu Y, Zhang Y, Wendell SG, Shulman GI, Jurczak MJ. Hepatic insulin sensitivity is improved in high‐fat diet‐fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis. Physiological Reports 2019, 7: e14281. PMID: 31724300, PMCID: PMC6854109, DOI: 10.14814/phy2.14281.Peer-Reviewed Original ResearchConceptsPark2 KO miceHepatic insulin sensitivityKO miceInsulin sensitivityInsulin resistanceShort-term HFD feedingDiet-induced hepatic insulin resistanceWhole-body insulin sensitivityPark2 knockout miceImproved hepatic insulin sensitivityDiet-induced obesityHigh-fat dietBioactive lipid speciesTumor necrosis factorHepatic insulin resistanceHepatic AMPK activationNegative energy balanceEndoplasmic reticulum stress responseRegular chowCytokine levelsHFD feedingReduced steatosisChronic HFDInterleukin-6Necrosis factor
2018
In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia.
Qiu Y, Perry RJ, Camporez JG, Zhang XM, Kahn M, Cline GW, Shulman GI, Vatner DF. In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochemical Journal 2018, 475: 1063-1074. PMID: 29483297, PMCID: PMC5884121, DOI: 10.1042/bcj20180063.Peer-Reviewed Original Research
2013
Cellular Mechanisms by Which FGF21 Improves Insulin Sensitivity in Male Mice
Camporez JP, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, Zhang D, Kahn M, Samuel VT, Jurczak MJ, Shulman GI. Cellular Mechanisms by Which FGF21 Improves Insulin Sensitivity in Male Mice. Endocrinology 2013, 154: 3099-3109. PMID: 23766126, PMCID: PMC3749479, DOI: 10.1210/en.2013-1191.Peer-Reviewed Original ResearchMeSH KeywordsAdipose Tissue, BrownAnimalsCells, CulturedDiet, High-FatDrug ImplantsEnergy MetabolismFibroblast Growth FactorsGlucose IntoleranceHumansInfusions, SubcutaneousInsulin ResistanceIsoenzymesLipectomyLipid MetabolismLiverMaleMiceMice, Inbred C57BLMuscle, SkeletalProtein Kinase CProtein Kinase C-epsilonProtein Kinase C-thetaRecombinant ProteinsConceptsType 2 diabetesInsulin resistanceRegular chowInsulin sensitivityInsulin actionNonalcoholic fatty liver diseaseFibroblast growth factor 21Fatty liver diseasePeripheral insulin sensitivityEffects of FGF21HFD-fed miceGrowth factor 21High-fat dietCellular mechanismsWild-type miceWhite adipose tissueMuscle insulin resistanceMuscle ceramide contentProtein kinase Cε activationFGF21 administrationLiver diseaseFactor 21Male miceNovel therapiesAdipose tissueCGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance
Cantley JL, Yoshimura T, Camporez JP, Zhang D, Jornayvaz FR, Kumashiro N, Guebre-Egziabher F, Jurczak MJ, Kahn M, Guigni BA, Serr J, Hankin J, Murphy RC, Cline GW, Bhanot S, Manchem VP, Brown JM, Samuel VT, Shulman GI. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 1869-1874. PMID: 23302688, PMCID: PMC3562813, DOI: 10.1073/pnas.1219456110.Peer-Reviewed Original ResearchMeSH Keywords1-Acylglycerol-3-Phosphate O-AcyltransferaseAdipose Tissue, WhiteAnimalsCell MembraneDiet, High-FatDiglyceridesEndoplasmic ReticulumGene ExpressionGene Knockdown TechniquesHumansImmunoblottingInjections, IntraperitonealInsulin ResistanceLipidsLiverMaleMiceMice, Inbred C57BLOligonucleotides, AntisenseProtein Kinase C-epsilonProtein TransportReverse Transcriptase Polymerase Chain ReactionConceptsHepatic insulin resistanceInsulin resistanceHepatic steatosisCGI-58 knockdownHigh-fat fed miceHyperinsulinemic-euglycemic clamp studiesSevere hepatic steatosisCGI-58 expressionFat-fed miceLipid-induced hepatic insulin resistanceChanarin-Dorfman syndromeComparative gene identification-58Lipid droplet-associated proteinAdipose triglyceride lipaseDroplet-associated proteinAntisense oligonucleotide treatmentInsulin sensitivityASO treatmentClamp studiesLipotoxic conditionsKnockdown miceCGI-58PKCε activationMiceTriglyceride lipase
2009
MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice
Roth RJ, Le AM, Zhang L, Kahn M, Samuel VT, Shulman GI, Bennett AM. MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. Journal Of Clinical Investigation 2009, 119: 3817-3829. PMID: 19920356, PMCID: PMC2786792, DOI: 10.1172/jci39054.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceDietary FatsDNA PrimersDual Specificity Phosphatase 1Energy MetabolismMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalMuscle Fibers, Slow-TwitchObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaRNA, MessengerTrans-ActivatorsTranscription FactorsUp-Regulation