2022
Protein and miRNA profile of circulating extracellular vesicles in patients with primary sclerosing cholangitis
Povero D, Tameda M, Eguchi A, Ren W, Kim J, Myers R, Goodman Z, Harrison S, Sanyal A, Bosch J, Ohno-Machado L, Feldstein A. Protein and miRNA profile of circulating extracellular vesicles in patients with primary sclerosing cholangitis. Scientific Reports 2022, 12: 3027. PMID: 35194091, PMCID: PMC8863778, DOI: 10.1038/s41598-022-06809-0.Peer-Reviewed Original ResearchConceptsSmall non-coding RNAsExtracellular vesiclesNon-coding RNAsNovel miRNAsControl subjectsFurther molecular characterizationMiRNA sequence analysisLiver-specific markersProtein profilingMiRNA cargoMolecular characterizationHuman diseasesCurrent serum markersNovel surrogate biomarkersPrimary sclerosing cholangitisCholestatic liver diseaseHealthy control subjectsMiRNA profilesProteinCell specificityDifferential centrifugationMiRNAsPSC patientsSclerosing cholangitisLiver disease
2020
Comprehensive characterization of hepatocyte-derived extracellular vesicles identifies direct miRNA-based regulation of hepatic stellate cells and DAMP-based hepatic macrophage IL-1β and IL-17 upregulation in alcoholic hepatitis mice
Eguchi A, Yan R, Pan S, Wu R, Kim J, Chen Y, Ansong C, Smith R, Tempaku M, Ohno-Machado L, Takei Y, Feldstein A, Tsukamoto H. Comprehensive characterization of hepatocyte-derived extracellular vesicles identifies direct miRNA-based regulation of hepatic stellate cells and DAMP-based hepatic macrophage IL-1β and IL-17 upregulation in alcoholic hepatitis mice. Journal Of Molecular Medicine 2020, 98: 1021-1034. PMID: 32556367, PMCID: PMC7810220, DOI: 10.1007/s00109-020-01926-7.Peer-Reviewed Original ResearchConceptsHepatic stellate cellsAlcoholic liver diseaseAlcoholic hepatitisAH miceIL-1βHepatic macrophagesStellate cellsExtracellular vesiclesPrimary hepatic stellate cellsIL-17 upregulationIL-17 productionUpregulated IL-1βHepatocyte-derived extracellular vesiclesNovel murine modelTLR9-dependent mannerMacrophage IL-1βHepatitis miceIL-17Liver diseaseControl miceCytokine productionLiver pathologyLiver fibrogenesisMurine modelΑ-SMA
2019
Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis
Povero D, Pinatel E, Leszczynska A, Goyal N, Nishio T, Kim J, Kneiber D, de Araujo Horcel L, Eguchi A, Ordonez P, Kisseleva T, Feldstein A. Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight 2019, 5 PMID: 31184999, PMCID: PMC6675559, DOI: 10.1172/jci.insight.125652.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell MovementCell ProliferationChemical and Drug Induced Liver InjuryChemotaxisDisease Models, AnimalExtracellular VesiclesHepatic Stellate CellsHumansInduced Pluripotent Stem CellsLiverLiver CirrhosisMaleMiceMice, Inbred C57BLMicroRNAsTranscriptomeTransforming Growth Factor betaConceptsHepatic stellate cell activationChronic liver diseaseAnti-fibrotic effectsStellate cell activationLiver fibrosisLiver diseaseExtracellular vesiclesInduced pluripotent stem cellsCell activationDuct ligation-induced liver fibrosisFlow cytometryAnti-fibrotic approachesDevelopment of cirrhosisPro-fibrogenic responseProgression of fibrosisStem cell-derived extracellular vesiclesAnti-fibrotic strategiesCharacterization of iPSCsGreatest unmet needCell-derived extracellular vesiclesMiR-92a-3pWound healing responseStem cellsIPSC-EVsLiver injury
2017
Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood
Eguchi A, Lazaro R, Wang J, Kim J, Povero D, Willliams B, Ho S, Stärkel P, Schnabl B, Ohno‐Machado L, Tsukamoto H, Feldstein A. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology 2017, 65: 475-490. PMID: 27639178, PMCID: PMC5407075, DOI: 10.1002/hep.28838.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAnalysis of VarianceAnimalsBiopsy, NeedleCells, CulturedDisease Models, AnimalExtracellular VesiclesFatty Liver, AlcoholicHepatocytesHumansImmunoblottingImmunohistochemistryMiceMicroRNAsMiddle AgedRandom AllocationReal-Time Polymerase Chain ReactionSampling StudiesSeverity of Illness IndexStatistics, NonparametricYoung AdultConceptsBlood extracellular vesiclesLiver injuryExtracellular vesiclesNuclear factor kappa BAlcoholic liver diseaseChronic liver injuryWeeks of infusionBile duct ligationB-cell lymphoma 2Levels of EVsFactor kappa BSteatohepatitis developmentNonalcoholic steatohepatitisLiver diseaseObese miceHepatic macrophagesDuct ligationKappa BMiR-340Cell originLymphoma 2Intragastric infusionMiceMiRNA signatureTime points
2014
MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
Kim J, Levy E, Ferbrache A, Stepanowsky P, Farcas C, Wang S, Brunner S, Bath T, Wu Y, Ohno-Machado L. MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure. Bioinformatics 2014, 30: 2826-2827. PMID: 24907367, PMCID: PMC4173015, DOI: 10.1093/bioinformatics/btu377.Peer-Reviewed Original ResearchConceptsWeb servicesWeb reportsLarge input filesNovel feature extractionEnd performance improvementsExploration of resultsGPU infrastructureInteractive visualizationJavaScript frameworkParallel computingGPU devicesHypertext PreprocessorCUDA CFeature extractionDrop operationInput filesPlot generationSalient featuresPerformance improvementInfrastructureNodesServicesData analysisComputingBrowserGAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda
Wang S, Kim J, Jiang X, Brunner S, Ohno-Machado L. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda. BMC Medical Genomics 2014, 7: s9. PMID: 25077821, PMCID: PMC4101446, DOI: 10.1186/1755-8794-7-s1-s9.Peer-Reviewed Original ResearchConceptsCompute Unified Device ArchitectureGraphics processing unitsHigh performance computeParallel computingNVIDIA Compute Unified Device ArchitectureUnified Device ArchitectureMultiple test datasetsGiga cell updatesTimes performance gainsSmith-Waterman algorithmGPU developersSW implementationSource codeExecution timeGHz CPUIntel XeonLong reference sequencesProcessing unitTarget identification algorithmCell updatesTest datasetProjects/Such large scalePerformance gainsBiomedical research community
2013
Differential Expression of miR-145 in Children with Kawasaki Disease
Shimizu C, Kim J, Stepanowsky P, Trinh C, Lau H, Akers J, Chen C, Kanegaye J, Tremoulet A, Ohno-Machado L, Burns J. Differential Expression of miR-145 in Children with Kawasaki Disease. PLOS ONE 2013, 8: e58159. PMID: 23483985, PMCID: PMC3590129, DOI: 10.1371/journal.pone.0058159.Peer-Reviewed Original ResearchMeSH KeywordsArteriesBase SequenceChildChild, PreschoolCluster AnalysisGene Expression RegulationHumansInfantMicroRNAsModels, BiologicalMolecular Sequence DataMucocutaneous Lymph Node SyndromeReal-Time Polymerase Chain ReactionSequence AlignmentSequence Analysis, DNASignal TransductionTransforming Growth Factor betaConceptsTGF-β pathwayGene expressionMiR-145Small non-coding RNAsKawasaki disease pathogenesisExtracellular vesiclesSmall RNA speciesPost-transcriptional levelDiscovery of microRNAsKawasaki diseaseNon-coding RNAsExpression of genesDisease pathogenesisSmall extracellular vesiclesSmall RNAsRNA speciesTarget genesTop pathwaysVascular smooth muscle cellsPathway analysisDifferentiation of neutrophilsDifferential expressionMicroRNAsArterial wallGeneration of myofibroblasts