2020
A complex karyotype and a genetic mutation in acute myeloid leukaemia
Bewersdorf JP, Siddon A, DiAdamo A, Zeidan AM. A complex karyotype and a genetic mutation in acute myeloid leukaemia. The Lancet 2020, 396: 2018. PMID: 33341145, DOI: 10.1016/s0140-6736(20)32543-5.Peer-Reviewed Original ResearchChromosomes, Human, Pair 17Fatal OutcomeFemaleGene FrequencyGenes, p53High-Throughput Nucleotide SequencingHumansKaryotypeLeukemia, Myeloid, AcuteMiddle AgedMonosomyMutationWide variation in use and interpretation of gene mutation profiling panels among health care providers of patients with myelodysplastic syndromes: results of a large web-based survey
Pine AB, Chokr N, Stahl M, Steensma DP, Sekeres MA, Litzow MR, Luger SM, Stone RM, Greenberg PL, Bejar R, Bewersdorf JP, Gore SD, Zeidan AM. Wide variation in use and interpretation of gene mutation profiling panels among health care providers of patients with myelodysplastic syndromes: results of a large web-based survey. Leukemia & Lymphoma 2020, 61: 1455-1464. PMID: 32026740, DOI: 10.1080/10428194.2020.1723013.Peer-Reviewed Original ResearchMeSH KeywordsHealth PersonnelHigh-Throughput Nucleotide SequencingHumansInternetMutationMyelodysplastic SyndromesPrognosisConceptsMyelodysplastic syndromeRisk stratificationMolecular profilingNext-generation sequencingWeb-based surveyRole of NGSManagement of patientsUtility of NGSEvidence-based guidelinesHealth care providersLarge web-based surveyMDS patientsPractice patternsTreatment decisionsCare providersResponse assessmentProviders' beliefsPatientsInstitutional guidelinesGene mutationsDiagnosisSyndromeTesting logisticsInterpretation of resultsWide variation
2019
The minimal that kills: Why defining and targeting measurable residual disease is the “Sine Qua Non” for further progress in management of acute myeloid leukemia
Bewersdorf JP, Shallis RM, Boddu PC, Wood B, Radich J, Halene S, Zeidan AM. The minimal that kills: Why defining and targeting measurable residual disease is the “Sine Qua Non” for further progress in management of acute myeloid leukemia. Blood Reviews 2019, 43: 100650. PMID: 31883804, DOI: 10.1016/j.blre.2019.100650.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsDisease ManagementHigh-Throughput Nucleotide SequencingHumansImmune Checkpoint InhibitorsLeukemia, Myeloid, AcuteNeoplasm, ResidualConceptsAcute myeloid leukemiaMyeloid leukemiaHard clinical outcomesClinical trial evidenceMeasurable residual diseaseResidual leukemic cellsRisk of relapseApprovable endpointsMRD statusDeep remissionMorphologic remissionMRD assessmentOverall survivalMRD levelsClinical outcomesDisease relapseInitial treatmentResidual diseaseTrial evidenceClinical trialsTreatment decisionsSurrogate endpointsBone marrowPreemptive interventionLeukemic cellsGetting personal with myelodysplastic syndromes: is now the right time?
Chokr N, Pine AB, Bewersdorf JP, Shallis RM, Stahl M, Zeidan AM. Getting personal with myelodysplastic syndromes: is now the right time? Expert Review Of Hematology 2019, 12: 215-224. PMID: 30977414, PMCID: PMC6540985, DOI: 10.1080/17474086.2019.1592673.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsHigh-Throughput Nucleotide SequencingHumansMutationMyelodysplastic SyndromesNeoplasm, ResidualPrognosisStem Cell TransplantationConceptsMyelodysplastic syndromeNext-generation sequencingTherapy selectionPrognosis of MDSRole of NGSPrognosis of patientsRoutine clinical practiceMinimal residual diseaseRecurrent genetic abnormalitiesResidual diseaseBlood countDisease stagePeripheral bloodHematologic malignanciesPrognostic evaluationMDS pathogenesisRoutine managementTherapy decisionsHealthy individualsBone marrowClinical practiceCytological examinationPatientsScoring systemDiagnostic accuracy