2023
Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions
Bernardi P, Gerle C, Halestrap A, Jonas E, Karch J, Mnatsakanyan N, Pavlov E, Sheu S, Soukas A. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death & Differentiation 2023, 30: 1869-1885. PMID: 37460667, PMCID: PMC10406888, DOI: 10.1038/s41418-023-01187-0.Peer-Reviewed Original ResearchMeSH KeywordsConsensusMitochondriaMitochondrial Membrane Transport ProteinsMitochondrial MembranesMitochondrial Permeability Transition PoreConceptsMitochondrial permeability transition poreMitochondrial permeability transitionAdenine nucleotide translocasePermeability transition poreATP synthase dimersTransition poreInner mitochondrial membrane permeabilityC subunit ringOuter mitochondrial membraneMitochondrial membrane permeabilityDeath of cellsMPTP openingNecrotic cell deathMitochondrial membraneNucleotide translocaseTransient mPTP openingMitochondrial bioenergeticsSub-conductance statesMolecular identityPermeability transitionCell deathPhysiological roleNon-selective channelsDiscovery decadesMembrane permeability
2020
ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. Journal Of Molecular And Cellular Cardiology 2020, 144: 109-118. PMID: 32461058, PMCID: PMC7877492, DOI: 10.1016/j.yjmcc.2020.05.013.Peer-Reviewed Original ResearchConceptsMitochondrial permeability transition poreC subunit ringMitochondrial permeability transitionPermeability transitionRegulator of metabolismPermeability transition poreImportant metabolic regulatorMitochondrial megachannelBiology todayRegulatory mechanismsCentral playerTransition poreMetabolic regulatorMolecular compositionRecent findingsRegulatorDegenerative diseasesPathophysiological roleRecent advancesMegachannelRoleMetabolismMysterious phenomenon
2019
A mitochondrial megachannel resides in monomeric F1FO ATP synthase
Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ, Jonas EA. A mitochondrial megachannel resides in monomeric F1FO ATP synthase. Nature Communications 2019, 10: 5823. PMID: 31862883, PMCID: PMC6925261, DOI: 10.1038/s41467-019-13766-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCryoelectron MicroscopyMitochondria, HeartMitochondrial MembranesMitochondrial Proton-Translocating ATPasesProtein SubunitsSwineUnilamellar LiposomesConceptsATP synthase monomersMitochondrial permeability transition poreATP synthaseGiant unilamellar vesiclesMitochondrial megachannelOligomeric stateSmall unilamellar vesiclesF1Fo-ATP synthaseMitochondrial ATP synthaseMitochondrial inner membraneCryo-EM density mapsPermeability transition porePorcine heart mitochondriaUnilamellar vesiclesInner membraneMPTP activityTransition poreElectron cryomicroscopyChannel activityLipid compositionDimer formationHeart mitochondriaSynthaseChannel formationVesiclesParkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth
Chen R, Park HA, Mnatsakanyan N, Niu Y, Licznerski P, Wu J, Miranda P, Graham M, Tang J, Boon AJW, Cossu G, Mandemakers W, Bonifati V, Smith PJS, Alavian KN, Jonas EA. Parkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death & Disease 2019, 10: 469. PMID: 31197129, PMCID: PMC6565618, DOI: 10.1038/s41419-019-1679-x.Peer-Reviewed Original ResearchConceptsDJ-1C subunitATP synthaseParkinson's disease protein DJ-1Β-subunitProtein componentsATP synthase β subunitMitochondrial uncouplingDJ-1 bindsATP synthase efficiencyATP synthase F1Synthase β subunitATP production efficiencyProtein DJ-1Neuronal process extensionProtein levelsNeuronal process outgrowthDJ-1 knockoutWild-type counterpartsSubunit protein levelsDJ-1 mutationsSevere defectsCell metabolismKO neuronsKO cultures
2017
Inhibition of Bcl-xL prevents pro-death actions of ΔN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity
Park HA, Licznerski P, Mnatsakanyan N, Niu Y, Sacchetti S, Wu J, Polster BM, Alavian KN, Jonas EA. Inhibition of Bcl-xL prevents pro-death actions of ΔN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death & Differentiation 2017, 24: 1963-1974. PMID: 28777375, PMCID: PMC5635221, DOI: 10.1038/cdd.2017.123.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBcl-X ProteinBiphenyl CompoundsCell DeathCyclosporineGlutamic AcidMembrane Potential, MitochondrialMitochondrial MembranesMitochondrial Proton-Translocating ATPasesModels, BiologicalMutant ProteinsNeuritesNeurotoxinsNitrophenolsPiperazinesProtein SubunitsRats, Sprague-DawleyRhodaminesSulfonamidesConceptsBcl-xLABT-737ΔN-BclMitochondrial membraneWEHI-539ATP synthase c-subunitMitochondrial inner membrane depolarizationPro-death actionInner membrane depolarizationMitochondrial inner membraneOuter mitochondrial membraneMitochondrial inner membrane potentialATP synthase activityActivation of BaxInner membrane potentialMitochondrial permeability transition poreMitochondrial membrane potentialMembrane potentialPermeability transition poreAnti-apoptotic activityC subunitInner membraneB-cell lymphoma extra-large proteinBax activationGlutamate toxicity
2016
Physiological roles of the mitochondrial permeability transition pore
Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA. Physiological roles of the mitochondrial permeability transition pore. Journal Of Bioenergetics And Biomembranes 2016, 49: 13-25. PMID: 26868013, PMCID: PMC4981558, DOI: 10.1007/s10863-016-9652-1.BooksConceptsMitochondrial permeability transition poreATP synthaseOxidative phosphorylationATP productionMulti-protein enzymeF1Fo-ATP synthaseMembrane potential maintenanceInner mitochondrial membraneSynaptic vesicle recyclingMembrane-inserted portionPermeability transition poreMitochondrial permeability transitionRegulatory complexC subunitCellular functionsVesicle recyclingMitochondrial membraneCardiac developmentRegulatory mechanismsMitochondrial productionTransition porePermeability transitionPhysiological roleCell deathEnzymatic portion
2015
Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase
Jonas EA, Porter GA, Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacological Research 2015, 99: 382-392. PMID: 25956324, PMCID: PMC4567435, DOI: 10.1016/j.phrs.2015.04.013.BooksConceptsMitochondrial permeability transition poreATP synthaseC subunitCell deathF1Fo-ATP synthaseInner mitochondrial membranePermeability transition poreMitochondrial permeability transitionOuter membraneMitochondrial membraneRegulatory mechanismsOxidative phosphorylationATP productionTransition poreMitochondrial functionPermeability transitionMolecular componentsOsmotic dysregulationLarge conductancePathological roleRecent findingsPersistent openingSynthaseIon transportMembrane
2014
The Mitochondrial Complex V–Associated Large-Conductance Inner Membrane Current Is Regulated by Cyclosporine and Dexpramipexole
Alavian KN, Dworetzky SI, Bonanni L, Zhang P, Sacchetti S, Li H, Signore AP, Smith PJ, Gribkoff VK, Jonas EA. The Mitochondrial Complex V–Associated Large-Conductance Inner Membrane Current Is Regulated by Cyclosporine and Dexpramipexole. Molecular Pharmacology 2014, 87: 1-8. PMID: 25332381, PMCID: PMC4279080, DOI: 10.1124/mol.114.095661.Peer-Reviewed Original ResearchConceptsF1Fo-ATP synthaseInner mitochondrial membraneATP synthaseMitochondrial permeability transition poreSubmitochondrial vesiclesOligomycin sensitivity-conferring protein subunitMitochondrial membraneMitochondrial F1Fo-ATP synthaseMitochondrial matrix calciumFunctional conformational changesCellular energy productionHydrolysis of ATPPermeability transition poreC subunitIon conductanceATP/ADPProtein subunitsEnzyme complexOxidative phosphorylationConformational changesTransition poreComplex VLeak conductanceMatrix calciumEnergy productionAn uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore
Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA, Jonas EA. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 10580-10585. PMID: 24979777, PMCID: PMC4115574, DOI: 10.1073/pnas.1401591111.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCell DeathHEK293 CellsHumansIon Channel GatingIon ChannelsLiposomesMitochondriaMitochondrial Membrane Transport ProteinsMitochondrial MembranesMitochondrial Permeability Transition PoreMutationProtein ConformationProtein SubunitsProton-Translocating ATPasesRatsReactive Oxygen SpeciesConceptsMitochondrial PT poreF1Fo-ATP synthaseATP synthasePermeability transitionCell deathCellular metabolic efficiencyInner mitochondrial membrane permeabilityOxygen species-induced cell deathC subunit ringATP synthase F1Mitochondrial membrane permeabilityMitochondrial permeability transitionC subunitPT poreTight regulationATP productionMolecular identitySingle-channel conductanceChannel closureLeak channelsMPTP openingMetabolic efficiencyMembrane permeabilityHealthy cellsOsmotic shifts
2013
Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity
Jonas EA. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity. Biochimica Et Biophysica Acta 2013, 1842: 1168-1178. PMID: 24240091, PMCID: PMC4018426, DOI: 10.1016/j.bbadis.2013.11.007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBcl-X ProteinEnergy MetabolismHumansIon ChannelsMitochondrial DynamicsMitochondrial MembranesNeuronal PlasticityConceptsBcl-xLCaspase activationAnti-death proteinCell death stimuliMitochondrial membrane permeabilitySub-cellular membranesSynaptic vesicle recyclingNeuronal plasticityNormal neuronal plasticityInhibitor ABT-737Ion channel activityMitochondrial Bcl-xLMitochondrial positioningDeath stimuliMitochondrial releaseVesicle recyclingSynaptic growthMitochondrial functionNeurite retractionNeuronal activitySynaptic strengthSynaptic efficacyABT-737Channel activityLong-term declineF1FO ATPase vesicle preparation and technique for performing patch clamp recordings of submitochondrial vesicle membranes.
Sacchetti S, Alavian KN, Lazrove E, Jonas EA. F1FO ATPase vesicle preparation and technique for performing patch clamp recordings of submitochondrial vesicle membranes. Journal Of Visualized Experiments 2013, e4394. PMID: 23685483, PMCID: PMC3676267, DOI: 10.3791/4394.Peer-Reviewed Original ResearchConceptsF1Fo-ATP synthaseATP synthaseF1Fo-ATPaseSubmitochondrial vesiclesNecrotic cell deathPro-apoptotic factorsCell deathOuter membraneBcl-2 family proteinsMitochondrial outer membraneImportant cellular functionsOuter membrane ruptureImportant mitochondrial functionsRole of mitochondriaMediation of signalsMitochondrial permeability transition poreProduction of ATPApoptotic cell deathPermeability transition poreInner membrane poreCellular functionsFamily proteinsInner membraneOxidative phosphorylationBeta subunit
2012
Multipolar functions of BCL-2 proteins link energetics to apoptosis
Hardwick JM, Chen YB, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends In Cell Biology 2012, 22: 318-328. PMID: 22560661, PMCID: PMC3499971, DOI: 10.1016/j.tcb.2012.03.005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCaspasesEvolution, MolecularHumansMitochondrial MembranesProto-Oncogene Proteins c-bcl-2ConceptsBcl-2 proteinClassical apoptotic cell deathBcl-2 family proteinsSub-mitochondrial localizationApoptotic cell deathFamily proteinsClassical apoptosisBiochemical activityApoptosis regulatorCritical crosstalkCell survivalCell deathProteinApoptosisProfound effectCellsMultipolar functionsRegulatorCrosstalkLocalizationCurrent assumptionsDeathEffects of dexpramipexole on brain mitochondrial conductances and cellular bioenergetic efficiency
Alavian KN, Dworetzky SI, Bonanni L, Zhang P, Sacchetti S, Mariggio MA, Onofrj M, Thomas A, Li H, Mangold JE, Signore AP, DeMarco U, Demady DR, Nabili P, Lazrove E, Smith PJ, Gribkoff VK, Jonas EA. Effects of dexpramipexole on brain mitochondrial conductances and cellular bioenergetic efficiency. Brain Research 2012, 1446: 1-11. PMID: 22364637, PMCID: PMC3746080, DOI: 10.1016/j.brainres.2012.01.046.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAdrenergic beta-AntagonistsAnalysis of VarianceAnimalsBiophysical PhenomenaBrainCell SurvivalCells, CulturedCyclosporineDose-Response Relationship, DrugEnergy MetabolismEnzyme InhibitorsHumansMaleMembrane Potential, MitochondrialMiceMitochondriaMitochondrial MembranesNeuroblastomaNeuronsOligopeptidesOxygen ConsumptionPatch-Clamp TechniquesPropranololRatsRats, Sprague-DawleyConceptsAmyotrophic lateral sclerosisParkinson's diseaseRisk of deathChronic neurological disorderLateral sclerosisInefficient energy productionNeurological disordersMitochondrial dysfunctionMembrane currentsDiseaseCellular energy productionDysfunctional mitochondriaCellular stressSclerosisDysfunctionDexpramipexoleInjuryNeurons
2011
Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential
Chen YB, Aon MA, Hsu YT, Soane L, Teng X, McCaffery JM, Cheng WC, Qi B, Li H, Alavian KN, Dayhoff-Brannigan M, Zou S, Pineda FJ, O'Rourke B, Ko YH, Pedersen PL, Kaczmarek LK, Jonas EA, Hardwick JM. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal Of Cell Biology 2011, 195: 263-276. PMID: 21987637, PMCID: PMC3198165, DOI: 10.1083/jcb.201108059.Peer-Reviewed Original ResearchConceptsMitochondrial membrane potentialMitochondrial membraneMitochondrial ATP synthase β-subunitATP synthase β subunitBcl-2 family proteinsOuter membrane permeabilizationInner mitochondrial membrane potentialMembrane potentialMitochondrial energetic capacityOuter mitochondrial membraneSynthase β subunitInner mitochondrial membraneInner membrane potentialATP synthaseFamily proteinsBiochemical approachesGenetic evidenceEndogenous BclMembrane permeabilizationCellular resourcesΒ-subunitBcl-xLMitochondrial energeticsEnergetic capacityMitochondrial cristaeBcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase
Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJ, Hardwick JM, Jonas EA. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nature Cell Biology 2011, 13: 1224-1233. PMID: 21926988, PMCID: PMC3186867, DOI: 10.1038/ncb2330.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBcl-2 Homologous Antagonist-Killer ProteinBcl-2-Associated X ProteinBcl-X ProteinBiphenyl CompoundsCarbonyl Cyanide p-TrifluoromethoxyphenylhydrazoneCells, CulturedEnergy MetabolismEnzyme InhibitorsHippocampusHydrolysisMembrane Potential, MitochondrialMitochondriaMitochondrial MembranesMitochondrial Proton-Translocating ATPasesNeuronsNitrophenolsOligomycinsOxygen ConsumptionPatch-Clamp TechniquesPiperazinesProton IonophoresRatsRecombinant Fusion ProteinsRNA InterferenceSulfonamidesSynapsesTime FactorsTransfectionConceptsBcl-xLSynthase complexATP synthaseMitochondrial F1Fo-ATP synthaseAnti-apoptotic BCL2 family proteinsF1Fo-ATP synthaseATP synthase complexF1FO-ATPase activityBcl-xL activityATPase activityBcl-xL proteinBCL2 family proteinsEndogenous Bcl-xLPresence of ATPFamily proteinsATPase complexNormal neuronal functionMembrane leak conductanceSubmitochondrial vesiclesΒ-subunitProtect cellsGenetic inhibitionMitochondrial efficiencyF1FoApoptotic molecules
2009
Molecular participants in mitochondrial cell death channel formation during neuronal ischemia
Jonas EA. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Experimental Neurology 2009, 218: 203-212. PMID: 19341732, PMCID: PMC2710418, DOI: 10.1016/j.expneurol.2009.03.025.Peer-Reviewed Original ResearchConceptsBcl-2 family proteinsCell deathFamily proteinsInner membraneOuter membraneIon channelsMolecular participantsNumerous cellular processesMitochondrial ion channelsComplex of proteinsSpecialized physiological functionsMembrane compartmentalizationIon channel complexCellular processesPhysiological functionsIon channel conductanceCytosolic metabolitesChannel complexProteinMembrane potentialChannel formationMembraneChannel conductanceSynaptic transmissionVDAC
2007
Bcl-xL Inhibitor ABT-737 Reveals a Dual Role for Bcl-xL in Synaptic Transmission
Hickman JA, Hardwick JM, Kaczmarek LK, Jonas EA. Bcl-xL Inhibitor ABT-737 Reveals a Dual Role for Bcl-xL in Synaptic Transmission. Journal Of Neurophysiology 2007, 99: 1515-1522. PMID: 18160428, PMCID: PMC2836590, DOI: 10.1152/jn.00598.2007.Peer-Reviewed Original ResearchConceptsMitochondrial outer membraneEndogenous Bcl-xLMitochondrial channel activityBcl-xLInhibitor ABT-737ABT-737Outer membraneBcl-xL.Pro-apoptotic cleavage productRecombinant Bcl-xLChannel activityBcl-xL proteinSynaptic functionDual roleGenetic toolsDomain pocketSynaptic transmissionSynaptic activityGiant presynaptic terminalEquivalent modificationEndogenous proteolysisRepetitive synaptic activityBH3Cleavage productsProteinHypoxia increases BK channel activity in the inner mitochondrial membrane
Gu XQ, Siemen D, Parvez S, Cheng Y, Xue J, Zhou D, Sun X, Jonas EA, Haddad GG. Hypoxia increases BK channel activity in the inner mitochondrial membrane. Biochemical And Biophysical Research Communications 2007, 358: 311-316. PMID: 17481584, DOI: 10.1016/j.bbrc.2007.04.110.Peer-Reviewed Original Research
2005
The Role of the Mitochondrial Apoptosis Induced Channel MAC in Cytochrome c Release
Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW. The Role of the Mitochondrial Apoptosis Induced Channel MAC in Cytochrome c Release. Journal Of Bioenergetics And Biomembranes 2005, 37: 155-164. PMID: 16167172, DOI: 10.1007/s10863-005-6570-z.Peer-Reviewed Original ResearchConceptsMitochondrial apoptosis-induced channelBcl-2 family proteinsMitochondrial outer membraneCytochrome cOuter membrane integrityCytochrome c releaseHigh-conductance channelPermeability transition poreIntermembrane spaceFamily proteinsCommitment stepOuter membraneC releaseProapoptotic factorsTransition poreSingle-channel behaviorMAC formationMembrane integrityCrucial eventEarly apoptosisApoptosisMolecular compositionRelease channelMAC activityMitochondria