2023
Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions
Bernardi P, Gerle C, Halestrap A, Jonas E, Karch J, Mnatsakanyan N, Pavlov E, Sheu S, Soukas A. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death & Differentiation 2023, 30: 1869-1885. PMID: 37460667, PMCID: PMC10406888, DOI: 10.1038/s41418-023-01187-0.Peer-Reviewed Original ResearchConceptsMitochondrial permeability transition poreMitochondrial permeability transitionAdenine nucleotide translocasePermeability transition poreATP synthase dimersTransition poreInner mitochondrial membrane permeabilityC subunit ringOuter mitochondrial membraneMitochondrial membrane permeabilityDeath of cellsMPTP openingNecrotic cell deathMitochondrial membraneNucleotide translocaseTransient mPTP openingMitochondrial bioenergeticsSub-conductance statesMolecular identityPermeability transitionCell deathPhysiological roleNon-selective channelsDiscovery decadesMembrane permeability
2022
Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex
Mnatsakanyan N, Park HA, Wu J, He X, Llaguno MC, Latta M, Miranda P, Murtishi B, Graham M, Weber J, Levy RJ, Pavlov EV, Jonas EA. Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex. Cell Death & Differentiation 2022, 29: 1874-1887. PMID: 35322203, PMCID: PMC9433415, DOI: 10.1038/s41418-022-00972-7.Peer-Reviewed Original ResearchConceptsMitochondrial permeability transitionATP synthase c-subunitCell deathMitochondrial ATP synthaseChannel activityCellular energy productionLeak channelsVoltage-gated ion channelsF1 subcomplexATP synthaseC subunitInner membraneProkaryotic hostsCell stressPermeability transitionIon channelsGating mechanismOsmotic changesLarge conductanceC-ringChannels triggersNeuronal deathF1SubcomplexOsmotic gradient
2019
ATP Synthase C-Subunit-Deficient Mitochondria Have a Small Cyclosporine A-Sensitive Channel, but Lack the Permeability Transition Pore
Neginskaya MA, Solesio ME, Berezhnaya EV, Amodeo GF, Mnatsakanyan N, Jonas EA, Pavlov EV. ATP Synthase C-Subunit-Deficient Mitochondria Have a Small Cyclosporine A-Sensitive Channel, but Lack the Permeability Transition Pore. Cell Reports 2019, 26: 11-17.e2. PMID: 30605668, PMCID: PMC6521848, DOI: 10.1016/j.celrep.2018.12.033.Peer-Reviewed Original ResearchConceptsMitochondrial PT poreC subunitPermeability transitionMitochondrial inner membrane permeabilityPermeability transition poreInner membrane permeabilityATP synthasePT poreBongkrekic acidLarge conductance channelTransition poreMitochondrial functionCell deathParental cellsMitochondriaChannel activityMembrane permeabilityLow-conductance channelsConductance channelLow conductanceSensitive channelsSynthaseConductanceCellsDisruption
2017
The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease
Jonas E, Porter G, Beutner G, Mnatsakanyan N, Park H, Mehta N, Chen R, Alavian K. The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease. Biological And Medical Physics, Biomedical Engineering 2017, 69-105. DOI: 10.1007/978-3-319-55539-3_3.Peer-Reviewed Original ResearchMitochondrial permeability transition porePermeability transition poreCell deathTransition poreMitochondrial inner membraneInner mitochondrial membraneC subunitATP synthaseInner membraneOuter membraneMitochondrial membraneCardiac developmentRegulatory mechanismsOxidative phosphorylationATP productionMitochondrial functionMolecular componentsMitochondrial efficiencyOsmotic dysregulationCell functionLarge conductanceRecent findingsPersistent openingMembraneIon transportExamination of Mitochondrial Ion Conductance by Patch Clamp in Intact Neurons and Mitochondrial Membrane Preparations
Jonas E, Mnatsakanyan N. Examination of Mitochondrial Ion Conductance by Patch Clamp in Intact Neurons and Mitochondrial Membrane Preparations. Neuromethods 2017, 123: 211-238. DOI: 10.1007/978-1-4939-6890-9_11.Peer-Reviewed Original ResearchMitochondrial calcium uniporterMitochondrial permeability transition poreInner membraneCell deathOuter membraneIon channelsBcl-2 family proteinsNumerous cellular processesMitochondrial ion channelsComplex of proteinsChannel activityTrafficking of metabolitesPro-death stimuliMitochondrial membrane preparationsPermeability transition poreIon channel activityMembrane compartmentalizationIon channel complexDeath channelATP synthaseCellular processesFamily proteinsCalcium uniporterMolecular participantsATP productionNeuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR. Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis. Stroke 2017, 48: 1033-1043. PMID: 28250197, PMCID: PMC5613764, DOI: 10.1161/strokeaha.116.015609.Peer-Reviewed Original ResearchConceptsCell death mechanismsCaspase-dependent apoptosisDeath mechanismsMolecular markersChemical inhibitorsCell death pathwaysNecroptotic cell deathSecondary injuryNecroptotic signalingDeath pathwaysNecrotic phenotypeIntracerebral hemorrhageCell deathMRNA synthesisNecroptosisIntracerebral hemorrhage (ICH) resultsShare featuresFerroptosisHemin-induced toxicityFerroptosis inhibitorsAutophagyCultured neuronsApoptosisHemorrhage resultsNeuronal necrosis
2016
The Mitochondrial Permeability Transition Pore and ATP Synthase
Beutner G, Alavian K, Jonas EA, Porter GA. The Mitochondrial Permeability Transition Pore and ATP Synthase. Handbook Of Experimental Pharmacology 2016, 240: 21-46. PMID: 27590224, PMCID: PMC7439278, DOI: 10.1007/164_2016_5.BooksConceptsPermeability transition poreElectron transport chainATP synthaseGeneration of ATPMitochondrial permeability transition poreATP generationTransition poreCell deathC subunit ringMitochondrial ATP generationFo subunitsEmbryonic mouse heartPTP openingTransport chainOxidative phosphorylationEquivalents NADHMature cellsSynthasePhysiologic roleMouse heartsATPRecent studiesPhosphorylationSubunitsFADH2Metabolic Control of Cell Death : The Role of Bcl‐xL
Park H, Licznerski P, Niu Y, Mnatsakanyan N, Miranda P, Wu J, Sacchetti S, Polster B, Alavian K, Jonas E. Metabolic Control of Cell Death : The Role of Bcl‐xL. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.1162.2.Peer-Reviewed Original ResearchΔN-BclMitochondrial permeability transition poreABT-737Glutamate-exposed neuronsBcl-xLGlutamate-induced excitotoxicityGlutamate-induced deathNeuronal energy metabolismMitochondrial potentialCell deathGlutamate challengeBrain ischemiaNeuroprotective propertiesNeuronal survivalFold lower concentrationCyclosporine ASpecific small molecule inhibitorsATP productionSmall molecule inhibitorsMetabolic controlMitochondrial channel activityMalignant cellsPro-apoptotic roleNeuronsDeathPhysiological roles of the mitochondrial permeability transition pore
Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA. Physiological roles of the mitochondrial permeability transition pore. Journal Of Bioenergetics And Biomembranes 2016, 49: 13-25. PMID: 26868013, PMCID: PMC4981558, DOI: 10.1007/s10863-016-9652-1.BooksConceptsMitochondrial permeability transition poreATP synthaseOxidative phosphorylationATP productionMulti-protein enzymeF1Fo-ATP synthaseMembrane potential maintenanceInner mitochondrial membraneSynaptic vesicle recyclingMembrane-inserted portionPermeability transition poreMitochondrial permeability transitionRegulatory complexC subunitCellular functionsVesicle recyclingMitochondrial membraneCardiac developmentRegulatory mechanismsMitochondrial productionTransition porePermeability transitionPhysiological roleCell deathEnzymatic portion
2015
The Mitochondrial Permeability Transition Pore, the c‐Subunit of the F1Fo ATP Synthase, Cellular Development, and Synaptic Efficiency
Jonas E, Porter G, Beutner G, Mnatsakanyan N, Alavian K. The Mitochondrial Permeability Transition Pore, the c‐Subunit of the F1Fo ATP Synthase, Cellular Development, and Synaptic Efficiency. 2015, 31-64. DOI: 10.1002/9781119017127.ch2.Peer-Reviewed Original ResearchMitochondrial permeability transition poreMitochondrial membrane permeabilizationPermeability transition poreATP synthaseC subunitCell deathOuter mitochondrial membrane permeabilizationTransition poreF1Fo-ATP synthaseInner mitochondrial membraneMembrane channel activityMitochondrial permeability transitionMetabolic plasticityPT poreOuter membraneCellular developmentMembrane permeabilizationMitochondrial membraneRegulatory mechanismsOxidative phosphorylationAdenosine triphosphate (ATP) productionMitochondrial functionPermeability transitionMolecular componentsTriphosphate productionCell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase
Jonas EA, Porter GA, Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacological Research 2015, 99: 382-392. PMID: 25956324, PMCID: PMC4567435, DOI: 10.1016/j.phrs.2015.04.013.BooksConceptsMitochondrial permeability transition poreATP synthaseC subunitCell deathF1Fo-ATP synthaseInner mitochondrial membranePermeability transition poreMitochondrial permeability transitionOuter membraneMitochondrial membraneRegulatory mechanismsOxidative phosphorylationATP productionTransition poreMitochondrial functionPermeability transitionMolecular componentsOsmotic dysregulationLarge conductancePathological roleRecent findingsPersistent openingSynthaseIon transportMembraneABT‐737 Inhibits Full Length And Cleaved Pro‐Apoptotic Bcl‐xL, Resulting in Differential Effects on Death And Survival
Park H, Licznerski P, Niu Y, Alavian K, Jonas E. ABT‐737 Inhibits Full Length And Cleaved Pro‐Apoptotic Bcl‐xL, Resulting in Differential Effects on Death And Survival. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.777.4.Peer-Reviewed Original ResearchFull-length Bcl-xLBcl-xLABT-737Mitochondrial potentialATP productionΔN-BclAnti-apoptotic Bcl-2 family proteinsBcl-2 family proteinsCell death stimuliMitochondrial membrane permeabilityATP synthase activityMitochondrial permeability transition porePro-apoptotic BclPro-apoptotic formBcl-xL inhibitorsPermeability transition poreDeath stimuliFamily proteinsBcl-xL.Isolated mitochondriaPharmacological inhibitorsTransition poreCell deathFull lengthSynthase activity
2014
An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore
Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA, Jonas EA. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 10580-10585. PMID: 24979777, PMCID: PMC4115574, DOI: 10.1073/pnas.1401591111.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCell DeathHEK293 CellsHumansIon Channel GatingIon ChannelsLiposomesMitochondriaMitochondrial Membrane Transport ProteinsMitochondrial MembranesMitochondrial Permeability Transition PoreMutationProtein ConformationProtein SubunitsProton-Translocating ATPasesRatsReactive Oxygen SpeciesConceptsMitochondrial PT poreF1Fo-ATP synthaseATP synthasePermeability transitionCell deathCellular metabolic efficiencyInner mitochondrial membrane permeabilityOxygen species-induced cell deathC subunit ringATP synthase F1Mitochondrial membrane permeabilityMitochondrial permeability transitionC subunitPT poreTight regulationATP productionMolecular identitySingle-channel conductanceChannel closureLeak channelsMPTP openingMetabolic efficiencyMembrane permeabilityHealthy cellsOsmotic shifts
2013
F1FO ATPase vesicle preparation and technique for performing patch clamp recordings of submitochondrial vesicle membranes.
Sacchetti S, Alavian KN, Lazrove E, Jonas EA. F1FO ATPase vesicle preparation and technique for performing patch clamp recordings of submitochondrial vesicle membranes. Journal Of Visualized Experiments 2013, e4394. PMID: 23685483, PMCID: PMC3676267, DOI: 10.3791/4394.Peer-Reviewed Original ResearchConceptsF1Fo-ATP synthaseATP synthaseF1Fo-ATPaseSubmitochondrial vesiclesNecrotic cell deathPro-apoptotic factorsCell deathOuter membraneBcl-2 family proteinsMitochondrial outer membraneImportant cellular functionsOuter membrane ruptureImportant mitochondrial functionsRole of mitochondriaMediation of signalsMitochondrial permeability transition poreProduction of ATPApoptotic cell deathPermeability transition poreInner membrane poreCellular functionsFamily proteinsInner membraneOxidative phosphorylationBeta subunitPINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage
Arena G, Gelmetti V, Torosantucci L, Vignone D, Lamorte G, De Rosa P, Cilia E, Jonas EA, Valente EM. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death & Differentiation 2013, 20: 920-930. PMID: 23519076, PMCID: PMC3679455, DOI: 10.1038/cdd.2013.19.Peer-Reviewed Original ResearchConceptsBcl-xLMitochondrial depolarizationCell deathPro-autophagic protein Beclin-1Autosomal recessive Parkinson's diseaseBeclin-1Recessive Parkinson's diseaseAnti-apoptotic proteinsXL interactionMitochondrial kinaseProtein Beclin 1Mitochondrial traffickingMitochondrial homeostasisMitophagy pathwayBcl-xL.PINK1Functional linkCell survivalPathogenesis of PDNovel mechanismPINK1 genePathwayCleavageMitophagyParkinson's disease
2012
Multipolar functions of BCL-2 proteins link energetics to apoptosis
Hardwick JM, Chen YB, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends In Cell Biology 2012, 22: 318-328. PMID: 22560661, PMCID: PMC3499971, DOI: 10.1016/j.tcb.2012.03.005.Peer-Reviewed Original ResearchConceptsBcl-2 proteinClassical apoptotic cell deathBcl-2 family proteinsSub-mitochondrial localizationApoptotic cell deathFamily proteinsClassical apoptosisBiochemical activityApoptosis regulatorCritical crosstalkCell survivalCell deathProteinApoptosisProfound effectCellsMultipolar functionsRegulatorCrosstalkLocalizationCurrent assumptionsDeathN-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death
Ofengeim D, Chen YB, Miyawaki T, Li H, Sacchetti S, Flannery RJ, Alavian KN, Pontarelli F, Roelofs BA, Hickman JA, Hardwick JM, Zukin RS, Jonas EA. N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nature Neuroscience 2012, 15: 574-580. PMID: 22366758, PMCID: PMC3862259, DOI: 10.1038/nn.3054.Peer-Reviewed Original Research
2009
Molecular participants in mitochondrial cell death channel formation during neuronal ischemia
Jonas EA. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Experimental Neurology 2009, 218: 203-212. PMID: 19341732, PMCID: PMC2710418, DOI: 10.1016/j.expneurol.2009.03.025.Peer-Reviewed Original ResearchConceptsBcl-2 family proteinsCell deathFamily proteinsInner membraneOuter membraneIon channelsMolecular participantsNumerous cellular processesMitochondrial ion channelsComplex of proteinsSpecialized physiological functionsMembrane compartmentalizationIon channel complexCellular processesPhysiological functionsIon channel conductanceCytosolic metabolitesChannel complexProteinMembrane potentialChannel formationMembraneChannel conductanceSynaptic transmissionVDACBcl-xL increases mitochondrial fission, fusion, and biomass in neurons
Berman SB, Chen YB, Qi B, McCaffery JM, Rucker EB, Goebbels S, Nave KA, Arnold BA, Jonas EA, Pineda FJ, Hardwick JM. Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons. Journal Of Cell Biology 2009, 184: 707-719. PMID: 19255249, PMCID: PMC2686401, DOI: 10.1083/jcb.200809060.Peer-Reviewed Original ResearchConceptsMitochondrial fissionMitochondrial morphologyCell deathApoptotic cell deathRate of fissionMitochondrial organellesOrganelle morphologyMitochondrial biomassBcl-xLCell typesFluorescence microscopyHealthy neuronsBclCultured neuronsDependent mechanismNeuronal dysfunctionFissionNeuronal processesBiomassSynaptic activityFusionOrganellesComputational strategyRate of fusionRegulationMitochondrial Ion Channels in Ischemic Brain
Jonas E. Mitochondrial Ion Channels in Ischemic Brain. Contemporary Clinical Neuroscience 2009, 117-150. DOI: 10.1007/978-1-60327-579-8_7.Peer-Reviewed Original ResearchIon channel activityBcl-2 family proteinsCell deathMitochondrial intermembrane spaceCytochrome cMitochondrial ion channelsChannel activityEnergy-dependent eventsIntermembrane spaceIon channel componentsCellular processesFamily proteinsInner membraneOuter membraneOxidative phosphorylationCell lifeProapoptotic factorsProapoptotic moleculesMitochondriaIon channelsCytosolic levelsCurrent knowledgeNormal brain functionDependent eventsEnergy deprivation