2024
Transmembrane pH gradient imaging in rodent glioma models
Mishra S, Santana J, Mihailovic J, Hyder F, Coman D. Transmembrane pH gradient imaging in rodent glioma models. NMR In Biomedicine 2024, 37: e5102. PMID: 38263680, PMCID: PMC10987279, DOI: 10.1002/nbm.5102.Peer-Reviewed Original ResearchNormal tissuesRodent glioma modelsGL261 gliomasU87 gliomasTumor microenvironmentPotential therapeutic targetGlioma modelTumor survivalExtracellular acidosisTumorMetabolic reprogrammingRegulate drug deliveryIntracellular pHRat brainExtracellular pHTherapeutic targetGliomaMouse brainDrug deliveryIntracellular milieuTransmembrane pH gradientBrainSubmillimeter resolutionTissueCells
2017
Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH
Rao JU, Coman D, Walsh JJ, Ali MM, Huang Y, Hyder F. Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Scientific Reports 2017, 7: 7865. PMID: 28801587, PMCID: PMC5554228, DOI: 10.1038/s41598-017-07609-7.Peer-Reviewed Original ResearchConceptsU251 tumorsTumor microenvironmentT2-weighted MRITherapeutic responseUntreated ratsTumor volumeRat brainTumor growthTherapeutic influenceGlioma growthPeritumoral regionRatsApoptosis inductionTumorsGliomasTumor corePhysiological readoutsExtracellular pHAcidic pHeTumor boundariesProliferationMicroenvironment
2016
Imaging the intratumoral–peritumoral extracellular pH gradient of gliomas
Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, Hyder F. Imaging the intratumoral–peritumoral extracellular pH gradient of gliomas. NMR In Biomedicine 2016, 29: 309-319. PMID: 26752688, PMCID: PMC4769673, DOI: 10.1002/nbm.3466.Peer-Reviewed Original ResearchConceptsRG2 tumorsTumor typesKi-67-positive cellsCancer therapeutic responseAcidic pHeTherapeutic responseRat brainPositive cellsSolid tumorsTumor cell invasionTumor borderTumorsPeritumoral regionNormal tissuesCell invasionTumor pHeP-MRSCancer imagingNeutral intracellularImagingPreclinical applicationsInfusionTherapy
2015
Distribution of temperature changes and neurovascular coupling in rat brain following 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) exposure
Coman D, Sanganahalli BG, Jiang L, Hyder F, Behar KL. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) exposure. NMR In Biomedicine 2015, 28: 1257-1266. PMID: 26286889, PMCID: PMC4573923, DOI: 10.1002/nbm.3375.Peer-Reviewed Original ResearchConceptsNeurovascular couplingBlood flowNeuronal activityNeural activityWhole-body hyperthermiaAbused psychostimulantMethylenedioxymethamphetamine (MDMA) exposureNeurovascular responseCortex temperatureMDMA effectsRat cortexRat brainBrain temperatureSubcortical regionsBrain regionsCortexSubcortexMDMA actionSkeletal muscleMonoaminergic stimulationBrainMDMACBFBody temperatureThermogenesis
2013
Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging
Coman D, Sanganahalli BG, Cheng D, McCarthy T, Rothman DL, Hyder F. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging. Magnetic Resonance Imaging 2013, 32: 305-313. PMID: 24581725, PMCID: PMC3965601, DOI: 10.1016/j.mri.2013.10.015.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsBrainFluorodeoxyglucose F18Glucose-6-PhosphateMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMetabolic Clearance RateMolecular ImagingPhosphorylationPhosphotransferasesRadionuclide ImagingRadiopharmaceuticalsRatsRats, Inbred LewReproducibility of ResultsSensitivity and SpecificityTissue DistributionConceptsRat brainChemical shift imagingHalothane-anesthetized ratsMagnetic resonance spectroscopy studyTotal glucose metabolismMinimal side effectsMagnetic resonance imaging (MRI) measurementsFunctional magnetic resonance imaging (fMRI) measurementsFDG phosphorylationFMRI BOLD responsesCerebral physiologyForepaw stimulationShift imagingGlucose metabolismSide effectsBrain tissueFDGExtracted tissuesTumor pathophysiologyBrainMRS measurementsTissue componentsVivo detectionVivoD-glucose