2008
The Effect of Different Frequencies of Stretch on Human Dermal Keratinocyte Proliferation and Survival
Nishimura K, Blume P, Ohgi S, Sumpio BE. The Effect of Different Frequencies of Stretch on Human Dermal Keratinocyte Proliferation and Survival. Journal Of Surgical Research 2008, 155: 125-131. PMID: 19059608, DOI: 10.1016/j.jss.2008.07.029.Peer-Reviewed Original ResearchConceptsERK 1/2P38 MAPKProtein kinaseKeratinocyte proliferation rateCell deathAkt inhibitorCyclic stretchDNA synthesisAktTransferase-mediated dUTP nick-end labeling stainingRepetitive stretchApoptosisMAPKDUTP nick end labeling stainingProliferation rateHuman dermalCell numberNick end labeling stainingTUNEL-positive cellsDermal keratinocytesStretchTerminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) stainingBrdU stainingKeratinocyte proliferationProliferation
2007
Effect of different frequencies of tensile strain on human dermal fibroblast proliferation and survival
Nishimura K, Blume P, Ohgi S, Sumpio BE. Effect of different frequencies of tensile strain on human dermal fibroblast proliferation and survival. Wound Repair And Regeneration 2007, 15: 646-656. PMID: 17971010, DOI: 10.1111/j.1524-475x.2007.00295.x.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinaseP38 mitogen-activated protein kinaseMAPK/ERK kinaseExtracellular signal-regulated kinaseDominant-negative AktHuman dermal fibroblastsSignal-regulated kinaseCell numberERK kinaseProtein kinaseTransduction pathwaysDermal fibroblastsRelevant transduction pathwaysRelevant signal pathwaysDermal fibroblast proliferationHuman dermal fibroblast proliferationCultured human dermal fibroblastsSurvival of fibroblastsSignal pathwayKinaseNecrotic fibroblastsDNA synthesisCell proliferationAktTransferase-mediated dUTP nick-end labeling staining
2006
p38 Mitogen-Activated Protein Kinase Activation in Endothelial Cell Is Implicated in Cell Alignment and Elongation Induced by Fluid Shear Stress
Kadohama T, Akasaka N, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE. p38 Mitogen-Activated Protein Kinase Activation in Endothelial Cell Is Implicated in Cell Alignment and Elongation Induced by Fluid Shear Stress. Endothelium 2006, 13: 43-50. PMID: 16885066, DOI: 10.1080/10623320600660219.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodiesAtherosclerosisBlood PressureBlood VesselsCattleCell PolarityCell ShapeCells, CulturedDose-Response Relationship, DrugEndothelial CellsEnzyme ActivationEnzyme InhibitorsHemodynamicsMAP Kinase Signaling SystemP38 Mitogen-Activated Protein KinasesPhosphorylationRegional Blood FlowStress, MechanicalTime FactorsConceptsStatic endothelial cellsFluid shear stressP38 MAPKP38 Mitogen-Activated Protein Kinase ActivationMitogen-Activated Protein Kinase ActivationEndothelial cellsProtein kinase activationP38 MAPK inhibitor SB-203580Inhibitor SB 203580Cell alignmentProtein kinaseBovine aortic endothelial cellsLaminar shear stressKinase activationSB 203580P38 mitogenCultured bovine aortic endothelial cellsEC elongationAortic endothelial cellsMAPKCellsElongationActivationMorphometric analysisKinase
2004
Cell signalling in vascular cells exposed to cyclic strain: the emerging role of protein phosphatases
Lee T, Sumpio BE. Cell signalling in vascular cells exposed to cyclic strain: the emerging role of protein phosphatases. Biotechnology And Applied Biochemistry 2004, 39: 129-139. PMID: 15032733, DOI: 10.1042/ba20030104.Peer-Reviewed Original ResearchConceptsPhosphorylation stateSerine/threonine residuesProtein phosphatase type 2AAbnormal phosphorylation stateCritical cellular functionsPhosphorylation of tyrosineRole of phosphatasesVascular cellsRole of proteinsThreonine residuesCellular functionsProtein kinaseIntracellular proteinsCellular growthHuman diseasesProteinPhosphataseType 2AEndothelial cellsCellsCardiac hypertrophyKinasePhosphorylationHaemodynamic forcesRoleEffects of Cyclic Strain on Vascular Cells
Kakisis JD, Liapis CD, Sumpio BE. Effects of Cyclic Strain on Vascular Cells. Endothelium 2004, 11: 17-28. PMID: 15203876, DOI: 10.1080/10623320490432452.Peer-Reviewed Original ResearchConceptsCAMP-responsive elementVascular cell morphologyExtracellular mechanical signalsMitogen-activated protein kinaseProtein kinase CPlatelet-derived growth factor receptorEarly growth responseCells senseNumerous genesActivator proteinTranscription factorsProtein kinaseGrowth factor receptorAP-2Chemical signalsSecond messengerKinase CG proteinsMechanical signalsCell nucleiGrowth responseIon channelsCell morphologyFactor receptorCell proliferation
2003
NICOTINE ENHANCES ENDOTHELIAL CELL (EC) ADHESION MOLECULE EXPRESSION VIA P38 MITOGEN-ACTIVATED PROTEIN KINASE (MAPK)
Ueno H, Pradhan S, Schlessel D, Hirasawa H, Sumpio B. NICOTINE ENHANCES ENDOTHELIAL CELL (EC) ADHESION MOLECULE EXPRESSION VIA P38 MITOGEN-ACTIVATED PROTEIN KINASE (MAPK). Shock 2003, 19: 30. DOI: 10.1097/00024382-200306001-00088.Peer-Reviewed Original ResearchAntisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling
Yamashita A, Hanna AK, Hirata S, Dardik A, Sumpio BE. Antisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling. Journal Of Vascular Surgery 2003, 37: 866-873. PMID: 12663990, DOI: 10.1067/mva.2003.130.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisCell Physiological PhenomenaEndothelium, VascularFibroblast Growth FactorsHyperplasiaJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein KinasesModels, AnimalP38 Mitogen-Activated Protein KinasesProteinsRabbitsRegenerationRNA, AntisenseTime FactorsTransfectionVeinsConceptsProtein kinaseBasic fibroblast growth factorMAPK activationFibroblast growth factorMitogen-activated protein kinase (MAPK) familyC-Jun N-terminal protein kinaseProtein kinase familyExtracellular signal-regulated kinase 1/2Antisense basic fibroblast growth factorMitogen-activated protein kinaseSignal-regulated kinase 1/2Messenger RNA sequencesP38 kinase activationGrowth factor altersMAPK-dependent mechanismFibroblast growth factor activityGrowth factorKinase familyKinase activationGrowth factor activityPhosphorylation of MAPKsKinase 1/2RNA sequencesWestern blot analysisBasic fibroblast growth factor activityRegulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins
Zhang J, Li W, Sanders MA, Sumpio BE, Asit P, Basson MD. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. The FASEB Journal 2003, 17: 1-22. PMID: 12626437, DOI: 10.1096/fj.02-0663fje.Peer-Reviewed Original ResearchMeSH KeywordsCaco-2 CellsCell AdhesionCell DivisionCell LineCollagen Type ICollagen Type IVEnzyme ActivationEpithelial CellsExtracellular Matrix ProteinsFibronectinsFocal Adhesion Kinase 1Focal Adhesion Protein-Tyrosine KinasesHumansIntegrin alpha5Integrin alphaVIntestinal MucosaLamininMitogen-Activated Protein KinasesPhosphorylationProtein-Tyrosine KinasesStress, MechanicalConceptsExtracellular signal-regulated protein kinaseMatrix proteinsIntestinal epithelial responsesHuman intestinal epithelial proliferationSignal-regulated protein kinaseJun N-terminal kinaseFocal adhesion kinaseIntestinal epithelial biologyMatrix-dependent mannerN-terminal kinaseExtracellular matrix proteinsEpithelial responseCaco-2 proliferationCaco-2BBe cellsIntestinal epithelial proliferationAdhesion kinaseEpidermal growth factorProtein kinaseERK activationEpithelial biologyEpithelial cell proliferationIntegrin subunitsKinaseAnti-integrin antibodiesMEK blockadeRole of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain
Lee T, Kim SJ, Sumpio BE. Role of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. Journal Of Cellular Physiology 2003, 194: 349-355. PMID: 12548554, DOI: 10.1002/jcp.10211.Peer-Reviewed Original ResearchConceptsP38 MAPK activationMAPK activationCatalytic subunitBovine aortic endothelial cellsPhospho-p38 MAPKOkadaic acidProtein phosphatase type 2AInhibitor of PP2AAortic endothelial cellsEndothelial cellsProtein kinaseRapid phosphorylationPP2AP38 mitogenRegulatory roleCell lysatesPhosphatase activityPP2AcMAPKPhosphorylationCyclic strainSubunitsType 2ACyclic strain resultsCells2P-0488 Nicotine enhances endothelial cell (EC) adhesion molecule expression — Involvement of protein kinase C (PKC), P38 mitogen-activated protein kinase (MAPK) and NFkB
Ueno H, Pradhan S, Wang X, Schlessel D, Hirasawa H, Sumpio B. 2P-0488 Nicotine enhances endothelial cell (EC) adhesion molecule expression — Involvement of protein kinase C (PKC), P38 mitogen-activated protein kinase (MAPK) and NFkB. Atherosclerosis Plus 2003, 4: 147. DOI: 10.1016/s1567-5688(03)90629-5.Peer-Reviewed Original Research
2002
SPHINGOSINE-1-PHOSPHATE STIMULATES HUMAN CACO-2 INTESTINAL EPITHELIAL PROLIFERATION VIA p38 ACTIVATION AND ACTIVATES ERK BY AN INDEPENDENT MECHANISM
THAMILSELVAN V, LI W, SUMPIO BE, BASSON MD. SPHINGOSINE-1-PHOSPHATE STIMULATES HUMAN CACO-2 INTESTINAL EPITHELIAL PROLIFERATION VIA p38 ACTIVATION AND ACTIVATES ERK BY AN INDEPENDENT MECHANISM. In Vitro Cellular & Developmental Biology - Animal 2002, 38: 246-253. PMID: 12197778, DOI: 10.1290/1071-2690(2002)038<0246:spshci>2.0.co;2.Peer-Reviewed Original ResearchConceptsExtracellular signal-regulated kinases 1Mitogen-activated protein kinaseMAP kinase kinaseCaco-2 proliferationMAPK activationHuman intestinal epithelial proliferationP38 activationCell typesSignal-regulated kinases 1Role of ERKMitogenic effectCaco-2 intestinal epithelial cellsIntracellular second messengerMEK inhibitionP38 MAPK activationCancer cell invasionKinase kinaseHuman Caco-2 intestinal epithelial cellsProtein kinaseStimulation of proliferationCell motilityIntestinal epithelial cell proliferationInhibitor PD98059ERK2ERK activation
2001
Cyclic strain activates the pro-survival Akt protein kinase in bovine aortic smooth muscle cells
Chen A, Gortler D, Kilaru S, Araim O, Frangos S, Sumpio B. Cyclic strain activates the pro-survival Akt protein kinase in bovine aortic smooth muscle cells. Surgery 2001, 130: 378-381. PMID: 11490374, DOI: 10.1067/msy.2001.116668.Peer-Reviewed Original ResearchConceptsBovine aortic smooth muscle cellsAortic smooth muscle cellsSmooth muscle cellsProtein kinaseSerine/threonine protein kinaseThreonine protein kinasePro-survival functionAkt protein kinasePro-survival Akt kinaseMuscle cellsPhosphorylation of AktPlatelet-derived growth factorInhibition of apoptosisAkt kinasePrevalence of apoptosisArterial endothelial cellsWestern blot analysisCell survivalAkt phosphorylationKinaseBlot analysisApoptosisCyclic strainPhosphorylationArterial SMC proliferationThe Integrin-Mediated Cyclic Strain-Induced Signaling Pathway in Vascular Endothelial Cells
Frangos S, Knox R, Yano Y, Chen E, Di Luozzo G, Chen A, Sumpio B. The Integrin-Mediated Cyclic Strain-Induced Signaling Pathway in Vascular Endothelial Cells. Endothelium 2001, 8: 1-10. PMID: 11409847, DOI: 10.3109/10623320109063153.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinase (MAPK) familyCytoplasmic protein kinaseProtein kinase familySignal transduction pathwaysFocal adhesion kinaseExtracellular matrix receptorsProcess of phosphorylationEndothelial cellsKinase familySignal transductionTranscription factorsAdhesion kinaseProtein kinaseTransduction pathwaysMatrix receptorsGene expressionTyrosine residuesSignaling pathwaysCyclic circumferential strainVascular endothelial cellsPathwayKinaseIntegrinsHemodynamic forcesVasculature results
2000
Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain
Kito H, Chen E, Wang X, Ikeda M, Azuma N, Nakajima N, Gahtan V, Sumpio B. Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. Journal Of Applied Physiology 2000, 89: 2391-2400. PMID: 11090594, DOI: 10.1152/jappl.2000.89.6.2391.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell MovementCells, CulturedEndothelium, VascularEnzyme ActivationEnzyme InhibitorsFlavonoidsImidazolesJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein KinasesP38 Mitogen-Activated Protein KinasesPhosphorylationPromoter Regions, GeneticPulmonary ArteryPyridinesResponse ElementsStress, MechanicalTetradecanoylphorbol AcetateTranscription Factor AP-1ConceptsPD 98059Activator protein-1SB 203580Protein kinaseBovine pulmonary arterial endothelial cellsPulmonary arterial endothelial cellsArterial endothelial cellsMAPK kinase kinase-1Mitogen-activated protein kinase activationMitogen-activated protein kinaseExtracellular signal-regulated kinaseTerminal protein kinaseKinase kinase 1AP-1/Cell alignmentERK kinase inhibitorProtein kinase activationSignal-regulated kinaseEndothelial cellsTranscriptional activationInactive mutantActivated MAPKsKinase activationKinase 1Transient transfectionHomocysteine stimulates MAP kinase in bovine aortic smooth muscle cells
Woo D, Dudrick S, Sumpio B. Homocysteine stimulates MAP kinase in bovine aortic smooth muscle cells. Surgery 2000, 128: 59-66. PMID: 10876187, DOI: 10.1067/msy.2000.106531.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCattleCell DivisionCells, CulturedDose-Response Relationship, DrugEnzyme ActivationEnzyme InhibitorsFlavonoidsHomocysteineMAP Kinase Signaling SystemMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesMuscle, Smooth, VascularPhosphorylationConceptsMAP kinase phosphorylationMAP kinaseKinase phosphorylationBASMC proliferationBovine aortic smooth muscle cellsAortic smooth muscle cellsCell proliferationExtracellular signal-regulated protein kinases 1Mitogen-activated protein kinaseSmooth muscle cell proliferationProtein kinase 1Smooth muscle cellsMuscle cell proliferationMAP kinase activationDegree of phosphorylationL-homocysteineMuscle cellsProtein kinaseKinase studiesKinase activationKinase 1Hallmark of atherosclerosisKinasePhosphorylationActive formMitogen‐activated protein phosphorylation in endothelial cells exposed to hyperosmolar conditions
Duzgun S, Rasque H, Kito H, Azuma N, Li W, Basson M, Gahtan V, Dudrick S, Sumpio B. Mitogen‐activated protein phosphorylation in endothelial cells exposed to hyperosmolar conditions. Journal Of Cellular Biochemistry 2000, 76: 567-571. PMID: 10653976, DOI: 10.1002/(sici)1097-4644(20000315)76:4<567::aid-jcb5>3.0.co;2-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium-Calmodulin-Dependent Protein KinasesCattleCell SizeEndothelium, VascularGlucoseJNK Mitogen-Activated Protein KinasesMannitolMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesOsmolar ConcentrationOsmotic PressureP38 Mitogen-Activated Protein KinasesPhosphorylationSignal TransductionSodium ChlorideTime FactorsUrea