Benjamin Goldman-Israelow, MD, PhD
Cards
Are You a Patient?
View this doctor's clinical profile on the Yale Medicine website for information about the services we offer and making an appointment.
View Doctor ProfileContact Info
Yale Medicine
300 George Street
New Haven, Connecticut 06511
United States
About
Titles
Assistant Professor of Medicine (Infectious Diseases)
Biography
Dr. Benjamin Goldman-Israelow is an Assistant Professor in the Department of Internal Medicine in the section of Infectious Diseases. He obtained his AB in Biology from Washington University in St. Louis and his MD and PhD degrees from The Icahn School of Medicine at Mount Sinai. He joined Yale internal medicine in the ABIM Short Track Pathway, completing residency and Infectious Diseases fellowship training. During fellowship, Dr. Goldman-Israelow joined the laboratory of Dr. Akiko Iwasaki for his postdoctoral studies. There, he has studied SARS-CoV-2 infection, pathogenesis, and immunity in both patients and pre-clinical models. His work has led to the development of one of the first mouse models to study SARS-CoV-2, the identification of immunologic factors contributing to COVID-19 pathogenesis and protection, and the development of a novel mucosal vaccine strategy that protects against pathology and transmission.
Dr. Goldman-Israelow is a practicing infectious diseases physician and also conducts biomedical research. His lab is focused on understanding the development of mucosal immune memory to emerging and endemic respiratory pathogens. Working through the lenses of natural infection and vaccination, the Israelow lab aims to better understand the correlates of protection and transmission of pandemic-associated pathogens, and leverage this research to develop the next generation of mucosal vaccines and therapeutics.
Appointments
Infectious Diseases
Assistant ProfessorPrimary
Other Departments & Organizations
Education & Training
- Postdoctoral Fellow
- Yale School of medicine (2022)
- Fellow
- Yale New Haven Hospital (2022)
- ABIM Physician-Scientist Research Pathway Resident
- Yale New Haven Hospital / Yale School of Medicine (2022)
- Resident
- Yale New Haven Hospital (2018)
- PhD
- Icahn School of Medicine at Mount Sinai, Microbiology (2016)
- MD
- Icahn School of Medicine at Mount Sinai, Microbiology (2016)
- AB
- Washington University in St. Louis, Biology (2006)
Research
Overview
Medical Research Interests
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Akiko Iwasaki, PhD
Albert Ko, MD
Nathan Grubaugh, PhD
Chantal Vogels, PhD
Peiwen Lu
M. Catherine Muenker, MS
SARS-CoV-2
Pandemics
Immunity, Innate
Immunity, Humoral
Immunity, Mucosal
Immunity, Cellular
Publications
Featured Publications
Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses
Mao T, Israelow B, Peña-Hernández MA, Suberi A, Zhou L, Luyten S, Reschke M, Dong H, Homer RJ, Saltzman WM, Iwasaki A. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 2022, 378: eabo2523. PMID: 36302057, PMCID: PMC9798903, DOI: 10.1126/science.abo2523.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsRespiratory mucosaSystemic immunityLethal SARS-CoV-2 infectionAcute respiratory syndrome coronavirus 2 pandemicSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemicSARS-CoV-2 infectionProtective mucosal immunityCross-reactive immunityT cell responsesCoronavirus 2 pandemicPrimary vaccinationParenteral vaccinesMucosal immunityVaccine strategiesRespiratory tractImmunoglobulin AMemory BImmune memoryPartial immunityCell responsesPoor immunityImmunitySpike proteinMucosaVaccine
2022
Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, O'Dea MR, Dutton S, Shamardani K, Nwangwu K, Mancusi R, Yalçın B, Taylor KR, Acosta-Alvarez L, Malacon K, Keough MB, Ni L, Woo PJ, Contreras-Esquivel D, Toland AMS, Gehlhausen JR, Klein J, Takahashi T, Silva J, Israelow B, Lucas C, Mao T, Peña-Hernández MA, Tabachnikova A, Homer RJ, Tabacof L, Tosto-Mancuso J, Breyman E, Kontorovich A, McCarthy D, Quezado M, Vogel H, Hefti MM, Perl DP, Liddelow S, Folkerth R, Putrino D, Nath A, Iwasaki A, Monje M. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022, 185: 2452-2468.e16. PMID: 35768006, PMCID: PMC9189143, DOI: 10.1016/j.cell.2022.06.008.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsSARS-CoV-2 infectionMicroglial reactivityCognitive impairmentCSF cytokines/chemokinesCytokines/chemokinesSARS-CoV-2Early time pointsCCL11 levelsMild COVIDRespiratory influenzaHippocampal neurogenesisOligodendrocyte lossHippocampal pathologyMyelin lossNeurological symptomsImpaired neurogenesisCOVID survivorsNeurobiological effectsNeural dysregulationMyelin dysregulationCCL11Neural cellsTime pointsNeurogenesisMiceInflammasome activation in infected macrophages drives COVID-19 pathology
Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN, Velazquez SE, Chen YG, Halene S, Iwasaki A, Meffre E, Nussenzweig M, Lieberman J, Wilen CB, Kluger Y, Flavell RA. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606: 585-593. PMID: 35483404, PMCID: PMC9288243, DOI: 10.1038/s41586-022-04802-1.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsInflammasome activationLung inflammationInflammatory responseInfected macrophagesSARS-CoV-2 infectionHuman macrophagesChronic lung pathologyPersistent lung inflammationSevere COVID-19Immune inflammatory responseInflammatory cytokine productionHumanized mouse modelNLRP3 inflammasome pathwayCOVID-19 pathologyCOVID-19SARS-CoV-2Productive viral cycleHyperinflammatory stateChronic stageIL-18Cytokine productionInflammatory cytokinesLung pathologyInflammasome pathwayInterleukin-1Multiscale PHATE identifies multimodal signatures of COVID-19
Kuchroo M, Huang J, Wong P, Grenier JC, Shung D, Tong A, Lucas C, Klein J, Burkhardt DB, Gigante S, Godavarthi A, Rieck B, Israelow B, Simonov M, Mao T, Oh JE, Silva J, Takahashi T, Odio CD, Casanovas-Massana A, Fournier J, Farhadian S, Dela Cruz C, Ko A, Hirn M, Wilson F, Hussin J, Wolf G, Iwasaki A, Krishnaswamy S. Multiscale PHATE identifies multimodal signatures of COVID-19. Nature Biotechnology 2022, 40: 681-691. PMID: 35228707, PMCID: PMC10015653, DOI: 10.1038/s41587-021-01186-x.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsSingle-cell RNA sequencingTransposase-accessible chromatinSingle-cell sequencingRNA sequencingBiological insightsPopulation groupingsSophisticated computational toolsBiological featuresSequencingFlow cytometryComputational toolsChromatinBiomedical communityDifferent data typesCell responsesCellsPhateHigh-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19Patients
2021
A humanized mouse model of chronic COVID-19
Sefik E, Israelow B, Mirza H, Zhao J, Qu R, Kaffe E, Song E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19. Nature Biotechnology 2021, 40: 906-920. PMID: 34921308, PMCID: PMC9203605, DOI: 10.1038/s41587-021-01155-4.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsChronic COVID-19Humanized mouse modelImmune responseMouse modelAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSyndrome coronavirus 2 infectionCOVID-19Adaptive human immune responsesInterferon-stimulated gene signaturePersistent viral RNACoronavirus 2 infectionPatient-derived antibodiesT-cell lymphopeniaHuman immune responseHyperactive immune responseCoronavirus disease 2019Inflammatory macrophage responseImmunological injuryLung pathologyCell lymphopeniaDisease 2019Severe diseaseRodent modelsInflammatory macrophagesA stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice
Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Alpert T, Anderson F, Earnest R, Fauver J, Kalinich C, Munyenyembe K, Ott I, Petrone M, Rothman J, Watkins A, Wilen C, Landry M, Grubaugh N, Pyle A, Iwasaki A. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal Of Experimental Medicine 2021, 219: e20211818. PMID: 34757384, PMCID: PMC8590200, DOI: 10.1084/jem.20211818.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsSARS-CoV-2 infectionChronic SARS-CoV-2 infectionVariants of concernLethal SARS-CoV-2 infectionPost-infection therapyLower respiratory tractPost-exposure treatmentType I interferonSARS-CoV-2Effective medical countermeasuresAdaptive immune systemBroad-spectrum antiviralsContext of infectionSingle doseRespiratory tractViral controlImmunodeficient miceSevere diseaseMouse modelI interferonViral infectionImmune systemInnate immunityDisease preventionConsiderable efficacyLongitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient
Klein J, Brito AF, Trubin P, Lu P, Wong P, Alpert T, Peña-Hernández MA, Haynes W, Kamath K, Liu F, Vogels CBF, Fauver JR, Lucas C, Oh J, Mao T, Silva J, Wyllie AL, Muenker MC, Casanovas-Massana A, Moore AJ, Petrone ME, Kalinich CC, Dela Cruz C, Farhadian S, Ring A, Shon J, Ko AI, Grubaugh ND, Israelow B, Iwasaki A, Azar MM, Team F. Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient. The Journal Of Infectious Diseases 2021, 225: 374-384. PMID: 34718647, PMCID: PMC8807168, DOI: 10.1093/infdis/jiab553.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfectionLongitudinal immune profilingTransplant recipientsImmune profilingPrimary SARS-CoV-2 infectionCD4 T cell poolMale renal transplant recipientSolid organ transplant recipientsSARS-CoV-2 reinfectionSARS-CoV-2 antibodiesSARS-CoV-2 infectionWhole viral genome sequencingRenal transplant recipientsImmune escape mutationsOrgan transplant recipientsT cell poolTime of reinfectionCoronavirus disease 2019Lower neutralization titersHumoral memory responsesViral genome sequencingInitial diagnosisImmunologic deficiencyHumoral responseImmunologic investigationsReply to: A finding of sex similarities rather than differences in COVID-19 outcomes
Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Liu F, Meir A, Sun J, Wang EY, Casanovas-Massana A, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Shaw A, Fournier JB, Odio CD, Farhadian S, Dela Cruz C, Grubaugh ND, Schulz WL, Ring AM, Ko AI, Omer SB, Iwasaki A. Reply to: A finding of sex similarities rather than differences in COVID-19 outcomes. Nature 2021, 597: e10-e11. PMID: 34552250, DOI: 10.1038/s41586-021-03645-6.Peer-Reviewed Original ResearchAdaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2
Israelow B, Mao T, Klein J, Song E, Menasche B, Omer SB, Iwasaki A. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Science Immunology 2021, 6: eabl4509. PMID: 34623900, PMCID: PMC9047536, DOI: 10.1126/sciimmunol.abl4509.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsSARS-CoV-2Viral clearanceImmune determinantsMouse modelSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Cellular adaptive immunitySyndrome coronavirus 2Vivo protective capacityVariants of concernMRNA vaccinationHomologous infectionCellular immunityConvalescent miceCoronavirus 2Antibody responsePrimary infectionEffective vaccineAdaptive immunityConfer protectionInfectionNatural infectionProtective capacityClearance
Academic Achievements & Community Involvement
Honors
honor Young Physician-Scientist Award
05/12/2023National AwardAmerican Society for Clinical Investigation (ASCI) CouncilDetailsUnited Stateshonor Iva Dostanic, MD, PhD, Physician-Scientist Trainee Award
03/24/2022Yale School of Medicine AwardDepartment of Internal MedicineDetailsUnited Stateshonor Ruth L. Kirschstein National Research Service Award
06/01/2012National AwardNIAIDDetailsUnited States
Clinical Care
Overview
Benjamin Goldman-Israelow, MD, PhD, is an infectious disease specialist who cares for people with illnesses caused by viruses and other microbes. He focuses on evaluating symptoms, diagnosing infections, and offering treatments that help patients recover and prevent future disease. He is especially interested in addressing respiratory infections, such as those caused by coronaviruses, by using a range of methods that emphasize both prevention and treatment.
As an assistant professor of medicine (infectious diseases) at Yale School of Medicine, Dr. Goldman-Israelow studies how the immune system builds long-term protection against respiratory pathogens. His research explores ways to strengthen the body’s defense at sites where infections often begin, with the aim of developing new vaccines and therapies to reduce spread and severity of disease.
Dr. Goldman-Israelow completed his medical training at the Icahn School of Medicine at Mount Sinai, followed by residency and fellowship at Yale New Haven Hospital.
Clinical Specialties
Are You a Patient?
View this doctor's clinical profile on the Yale Medicine website for information about the services we offer and making an appointment.
View Doctor ProfileNews
News
Get In Touch
Contacts
Yale Medicine
300 George Street
New Haven, Connecticut 06511
United States