Featured Publications
In silico screening identifies a novel small molecule inhibitor that counteracts PARP inhibitor resistance in ovarian cancer
Lin ZP, Al Zouabi NN, Xu ML, Bowen NE, Wu TL, Lavi ES, Huang PH, Zhu YL, Kim B, Ratner ES. In silico screening identifies a novel small molecule inhibitor that counteracts PARP inhibitor resistance in ovarian cancer. Scientific Reports 2021, 11: 8042. PMID: 33850183, PMCID: PMC8044145, DOI: 10.1038/s41598-021-87325-5.Peer-Reviewed Original ResearchConceptsEpithelial ovarian cancerSmall molecule inhibitorsPARP inhibitor resistancePARP inhibitorsBRCA mutationsOvarian cancerEOC cellsPoly ADP-ribose polymerase inhibitorsMolecule inhibitorsInhibitor resistanceADP-ribose polymerase inhibitorsTumor-bearing miceNovel small molecule inhibitorPARP inhibitor olaparibDefective homologous recombination (HR) repairEOC xenograftsClinical efficacySurvival timePutative small molecule inhibitorsInhibitor olaparibPolymerase inhibitorsHR repairInhibitorsCancerHomologous recombination repair
2006
Excess ribonucleotide reductase R2 subunits coordinate the S phase checkpoint to facilitate DNA damage repair and recovery from replication stress
Lin ZP, Belcourt MF, Carbone R, Eaton JS, Penketh PG, Shadel GS, Cory JG, Sartorelli AC. Excess ribonucleotide reductase R2 subunits coordinate the S phase checkpoint to facilitate DNA damage repair and recovery from replication stress. Biochemical Pharmacology 2006, 73: 760-772. PMID: 17188250, DOI: 10.1016/j.bcp.2006.11.014.Peer-Reviewed Original Research