2020
AgRP neurons control compulsive exercise and survival in an activity-based anorexia model
Miletta MC, Iyilikci O, Shanabrough M, Šestan-Peša M, Cammisa A, Zeiss CJ, Dietrich MO, Horvath TL. AgRP neurons control compulsive exercise and survival in an activity-based anorexia model. Nature Metabolism 2020, 2: 1204-1211. PMID: 33106687, DOI: 10.1038/s42255-020-00300-8.Peer-Reviewed Original ResearchConceptsAgRP neuronsActivity-based anorexia modelAgRP neuronal activityVivo fiber photometryFood-restricted miceFood-restricted animalsCompulsive exerciseAnorexia modelHypothalamic agoutiNeuropeptide YExercise volumeFood intakeMouse modelNeuronal activityFiber photometryDaily activationNeuronal circuitsPsychiatric conditionsAnorexia nervosaChemogenetic toolsNeuronsLong-term behavioral impactElevated fat contentVoluntary cessationFat content
2017
Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons
Suyama S, Ralevski A, Liu ZW, Dietrich MO, Yada T, Simonds SE, Cowley MA, Gao XB, Diano S, Horvath TL. Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife 2017, 6: e25755. PMID: 28762946, PMCID: PMC5538821, DOI: 10.7554/elife.25755.Peer-Reviewed Original ResearchConceptsExcitatory postsynaptic currentsPOMC neuronsCP-AMPARsFasted stateAMPAR-mediated excitatory postsynaptic currentsCalcium-permeable AMPA glutamate receptorsInhibition of EPSCsHigh-fat diet exposurePOMC neuronal activityPro-opiomelanocortin (POMC) neuronsCalcium-permeable AMPARsElevated leptin levelsAMPA glutamate receptorsAmplitude of mEPSCsFood deprivationEntry of calciumAMPA receptor complexesDiet exposureLeptin levelsPostsynaptic currentsEPSC amplitudeGlutamate receptorsNeuronal activityExtracellular calciumLinear current-voltage relationshipEndothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons
Varela L, Suyama S, Huang Y, Shanabrough M, Tschöp M, Gao XB, Giordano FJ, Horvath TL. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes 2017, 66: db161106. PMID: 28292966, PMCID: PMC5440016, DOI: 10.2337/db16-1106.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalBlotting, WesternEndotheliumEnergy MetabolismFood DeprivationGene Knockdown TechniquesGlucoseHyperphagiaHypothalamusHypoxia-Inducible Factor 1, alpha SubunitImmunohistochemistryMiceMicroscopy, ElectronMitochondriaNeuronsPatch-Clamp TechniquesPro-OpiomelanocortinReal-Time Polymerase Chain ReactionConceptsPOMC neuronsGlucose uptakePOMC neuronal activityHypothalamic proopiomelanocortin (POMC) neuronsHypoxia-inducible factor-1αProopiomelanocortin neuronsVascular impairmentGlucose administrationMetabolic disordersNeuronal activityMetabolic environmentFactor-1αImpaired functioningEndothelial cellsNeuronsFood deprivationVivoCentral controlHypothalamusMiceAdministrationUptakeImpairment
2013
Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses
Matarese G, Procaccini C, Menale C, Kim JG, Kim JD, Diano S, Diano N, De Rosa V, Dietrich MO, Horvath TL. Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 6193-6198. PMID: 23530205, PMCID: PMC3625304, DOI: 10.1073/pnas.1210644110.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAllelesAnimalsAntigensAutoimmunityCatalytic DomainEncephalomyelitis, Autoimmune, ExperimentalFlow CytometryFood DeprivationForkhead Transcription FactorsGenetic Predisposition to DiseaseHumansHungerHypothalamusInflammationMiceMice, KnockoutMice, TransgenicMyelin SheathNeuronsSirtuin 1T-Lymphocytes, RegulatoryThymus GlandConceptsRegulatory T cell responsesDelayed-type hypersensitivity responseHypothalamic feeding circuitsPeptide-expressing neuronsRegulatory T cellsSympathetic nervous systemT cell responsesForkhead box P3T helper 1Adaptive immune responsesWhole-body energy metabolismLow energy availabilityT cell activationAutoimmune disease susceptibilityBox P3Hypothalamic agoutiThymic generationHelper 1Hypersensitivity responseProinflammatory cytokinesHypothalamic neuronsSuppressive capacityT cellsImmune responseNervous system
2010
Enhanced anorexigenic signaling in lean obesity resistant syndecan-3 null mice
Zheng Q, Zhu J, Shanabrough M, Borok E, Benoit SC, Horvath TL, Clegg DJ, Reizes O. Enhanced anorexigenic signaling in lean obesity resistant syndecan-3 null mice. Neuroscience 2010, 171: 1032-1040. PMID: 20923696, PMCID: PMC2991621, DOI: 10.1016/j.neuroscience.2010.09.060.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAlpha-MSHAnalysis of VarianceAnimalsBody WeightDose-Response Relationship, DrugEatingFeeding BehaviorFood DeprivationGene Expression RegulationMaleMiceMice, KnockoutNeuronsNeuropeptide YParaventricular Hypothalamic NucleusProto-Oncogene Proteins c-fosSignal TransductionSyndecan-3Time FactorsConceptsMelanocortin agonist melanotan IISyndecan-3 null miceParaventricular nucleusBody weightNull miceHypothalamic target neuronsNeuropeptide α-MSHRisk of diabetesC-Fos immunoreactivityHypothalamic paraventricular nucleusBody weight regulationWild-type miceTypes of cancerAnorexigenic αAgRP neuronsHormone neuronsHypothalamic circuitsNeuropeptide YAnorexigenic signalingNeuropeptide responsesCardiovascular diseaseFood intakeTarget neuronsMelanotan IIType mice
1998
Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone
Diano S, Naftolin F, Goglia F, Horvath T. Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone. Peptides 1998, 75: 117-126. PMID: 9802401, DOI: 10.1016/s0167-0115(98)00060-3.Peer-Reviewed Original ResearchConceptsParvicellular paraventricular nucleusMedian forebrain bundleProximal dendritesTRH neuronsDistal dendritesCell bodiesTRH cellsNPY inputAsymmetric synapsesCatecholaminergic inputsTyrosine hydroxylaseDendritic spinesInvolvement of NPYNumber of NPYThyrotropin-releasing hormone (TRH) mRNATH-immunoreactive fibersThyroid feedbackThyrotropin-releasing hormoneFood deprivationLight microscopic examinationTRH immunoreactive cellsNPY fibersNPY releaseHypothalamic NPYCatecholaminergic neurons