2024
Aging-dependent loss of functional connectivity in a mouse model of Alzheimer’s disease and reversal by mGluR5 modulator
Mandino F, Shen X, Desrosiers-Grégoire G, O’Connor D, Mukherjee B, Owens A, Qu A, Onofrey J, Papademetris X, Chakravarty M, Strittmatter S, Lake E. Aging-dependent loss of functional connectivity in a mouse model of Alzheimer’s disease and reversal by mGluR5 modulator. Molecular Psychiatry 2024, 1-16. PMID: 39424929, DOI: 10.1038/s41380-024-02779-z.Peer-Reviewed Original ResearchFunctional connectivity deficitsConnectivity deficitsFunctional connectivityBrain connectivityAllosteric modulators of mGluR5Alzheimer's diseaseDefault-mode networkModulation of mGluR5Loss of functional connectivityResting-state fMRIApplication of fMRIWild-type controlsAged AD miceMouse model of Alzheimer's diseaseAD-related changesAD miceModel of Alzheimer's diseaseAssociated with synaptic damageMGluR5 modulationMonths of ageFMRI measurementsAmyloid accumulationDecreased connectivityBrain networksSilent allosteric modulatorsCellular Prion Protein Conformational Shift after Liquid–Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations
Liu Y, Tuttle M, Kostylev M, Roseman G, Zilm K, Strittmatter S. Cellular Prion Protein Conformational Shift after Liquid–Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations. Journal Of The American Chemical Society 2024, 146: 27903-27914. PMID: 39326869, PMCID: PMC11469297, DOI: 10.1021/jacs.4c10590.Peer-Reviewed Original ResearchConceptsLiquid-liquid phase separationCellular prion proteinAssociated with neurodegenerative diseasesAmyloid-bMaturation processDisordered proteinsPrion proteinConformational shiftProtein conformationConformational changesNeurodegenerative diseasesInduction conditionsConformational statesProteinPrPMutationsPhase separationSaturating concentrationsMolecular motionSolid-like stateMaturationDisease-related cognitive deficitsNeurodegenerationInductionAlzheimerLysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism
Takahashi H, Perez-Canamas A, Lee C, Ye H, Han X, Strittmatter S. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. Communications Biology 2024, 7: 1088. PMID: 39237682, PMCID: PMC11377756, DOI: 10.1038/s42003-024-06810-5.Peer-Reviewed Original ResearchConceptsMyelin lipid metabolismCo-immunoprecipitation assaysSulfated derivative sulfatideLipid metabolismAssociated with multiple neurological disordersCo-immunoprecipitationTMEM106BTransmembrane proteinsAmyloid fibrilsTMEM106B deficiencyHypomyelinating leukodystrophyAlzheimer's diseasePhysiological functionsFrontotemporal dementiaMolecular levelNeurodegenerative brainGalactosylceramidaseLipidomic analysisMultiple neurological disordersMetabolismMyelin lipidsDecreased levelsEndolysosomesAmyloidGalactosylceramidase activityRepetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter S, Lake E. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. Journal Of Neurotrauma 2024 PMID: 39096127, DOI: 10.1089/neu.2024.0095.Peer-Reviewed Original ResearchChronic variable stressRegional homogeneityFunctional brain abnormalitiesSynapse densityMild closed-head injuryClosed-head injuryTraumatic brain injuryTreat traumatic brain injuryNeurobiological alterationsMild head injuryVariable stressBrain abnormalitiesPositron emission tomographyMultimodal studiesSynaptic densityMagnetic resonance imagingBrain imagingBrain injuryInduce synapse lossFMRIInjured miceMouse modelEmission tomographyResonance imagingCompensatory mechanismsCharacterizing the Effects of Progranulin Reduction on Tau Pathology and Phenotypes in a Mouse Model of Tauopathy (P4-9.016)
Bhagwagar S, Takahashi H, Strittmatter S. Characterizing the Effects of Progranulin Reduction on Tau Pathology and Phenotypes in a Mouse Model of Tauopathy (P4-9.016). Neurology 2024, 102 DOI: 10.1212/wnl.0000000000205227.Peer-Reviewed Original ResearchWhole genome‐wide sequence analysis of long‐lived families (Long‐Life Family Study) identifies MTUS2 gene associated with late‐onset Alzheimer's disease
Xicota L, Cosentino S, Vardarajan B, Mayeux R, Perls T, Andersen S, Zmuda J, Thyagarajan B, Yashin A, Wojczynski M, Krinsky‐McHale S, Handen B, Christian B, Head E, Mapstone M, Schupf N, Lee J, Barral S, Study T, Abner E, Adams P, Aguirre A, Albert M, Albin R, Allen M, Alvarez L, Andrews H, Apostolova L, Arnold S, Asthana S, Atwood C, Ayres G, Barber R, Barnes L, Barral S, Bartlett J, Beach T, Becker J, Beecham G, Benchek P, Bennett D, Bertelson J, Biber S, Bird T, Blacker D, Boeve B, Bowen J, Boxer A, Brewer J, Burke J, Burns J, Bush W, Buxbaum J, Byrd G, Cantwell L, Cao C, Carlsson C, Carrasquillo M, Chan K, Chasse S, Chen Y, Chesselet M, Chin N, Chui H, Chung J, Craft S, Crane P, Cranney M, Cruchaga C, Cuccaro M, Culhane J, Cullum C, Darby E, Davis B, De Jager P, DeCarli C, DeToledo J, Dickson D, Dobbins N, Duara R, Ertekin‐Taner N, Evans D, Faber K, Fairchild T, Fallin D, Fallon K, Fardo D, Farlow M, Farrell J, Farrer L, Fernandez‐Hernandez V, Foroud T, Frosch M, Galasko D, Gamboa A, Gauthreaux K, Gefen T, Geschwind D, Ghetti B, Gilbert J, Goate A, Grabowski T, Graff‐Radford N, Griswold A, Haines J, Hakonarson H, Hall K, Hall J, Hamilton R, Hamilton‐Nelson K, Han X, Harari O, Hardy J, Harrell L, Head E, Henderson V, Hernandez M, Honig L, Huebinger R, Huentelman M, Hulette C, Hyman B, Hynan L, Ibanez L, Jarvik G, Jayadev S, Jin L, Johnson K, Johnson L, Jones B, Jun G, Kamboh M, Kang M, Karydas A, Katz M, Kauwe J, Kaye J, Keene C, Keller B, Khaleeq A, Kim R, Knebl J, Kowall N, Kramer J, Kukull W, Kunkle B, Kuzma A, LaFerla F, Lah J, Larson E, Lerch M, Lerner A, Leung Y, Leverenz J, Levey A, Lieberman A, Lipton R, Lopez O, Lunetta K, Lyketsos C, Mains D, Manly J, Mark L, Marquez D, Marson D, Martin E, Masliah E, Massman P, Masurkar A, Mayeux R, McCormick W, McCurry S, McDonough S, McKee A, Mesulam M, Mez J, Miller B, Miller C, Mock C, Moghekar A, Montine T, Monuki E, Mooney S, Morris J, Mukherjee S, Myers A, Naj A, Nguyen T, Noble J, Nudelman K, O'Bryant S, Ormsby K, Ory M, Palmer R, Parisi J, Paulson H, Pavlik V, Paydarfar D, Perez V, Pericak‐Vance M, Petersen R, Polk M, Qu L, Quiceno M, Quinn J, Raj A, Rajabli F, Ramanan V, Reiman E, Reisch J, Reitz C, Ringman J, Roberson E, Rodriguear M, Rogaeva E, Rosen H, Rosenberg R, Royall D, Sano M, Saykin A, Schellenberg G, Schneider J, Schneider L, Seeley W, Sherva R, Shibata D, Small S, Smith A, Smith J, Song Y, Spina S, St George‐Hyslop P, Stern R, Stevens A, Strittmatter S, Sultzer D, Swerdlow R, Teich A, Tilson J, Tosto G, Trojanowski J, Troncoso J, Tsuang D, Valladares O, Van Deerlin V, Van Dyck C, Van Eldik L, Vance J, Vardarajan B, Vassar R, Vinters H, Wang L, Weintraub S, Welsh‐Bohmer K, Wheeler N, Wijsman E, Wilhelmsen K, Williams B, Williamson J, Wilms H, Wingo T, Wisniewski T, Woltjer R, Woon M, Younkin S, Yu L, Zhao Y, Zhou X, Zhu C, Aizenstein H, Ances B, Andrews H, Bell K, Birn R, Brickman A, Bulova P, Cheema A, Chen K, Christian B, Clare I, Cohen A, Constantino J, Doran E, Fagan A, Feingold E, Foroud T, Handen B, Harp J, Hartley S, Head E, Henson R, Hom C, Honig L, Ikonomovic M, Johnson S, Jordan C, Kamboh M, Keator D, Klunk W, Kofler J, Krinsky‐McHale S, Lai F, Lao P, Laymon C, Lee J, Lott I, Lupson V, Mapstone M, Mathis C, Minhas D, Nadkarni N, O'Bryant S, Parisi M, Pang D, Petersen M, Price J, Pulsifer M, Rafii M, Reiman E, Rizvi B, Rosas H, Ryan L, Schmitt F, Schupf N, Silverman W, Tudorascu D, Tumuluru R, Varadarajan B, White D, Yassa M, Zaman S, Zhang F. Whole genome‐wide sequence analysis of long‐lived families (Long‐Life Family Study) identifies MTUS2 gene associated with late‐onset Alzheimer's disease. Alzheimer's & Dementia 2024, 20: 2670-2679. PMID: 38380866, PMCID: PMC11032545, DOI: 10.1002/alz.13718.Peer-Reviewed Original ResearchConceptsLate-onset Alzheimer's diseaseGenes associated with late-onset Alzheimer's diseaseLate-onset Alzheimer's disease riskSeveral single nucleotide polymorphismsVariants associated with late-onset Alzheimer diseaseBeta-amyloidIdentified several single nucleotide polymorphismsWhole-genome sequence analysisGenome sequence analysisLevels of beta-amyloidAlzheimer's diseaseTight linkage disequilibriumMicrotubule associated proteinSingle nucleotide polymorphismsFamily studiesCandidate lociMTUS2Linkage disequilibriumSequence analysisAssociation analysisNucleotide polymorphismsGenetic associationAlzheimer's dementiaAssociated proteinGenetic componentReduced progranulin increases tau and α-synuclein inclusions and alters mouse tauopathy phenotypes via glucocerebrosidase
Takahashi H, Bhagwagar S, Nies S, Ye H, Han X, Chiasseu M, Wang G, Mackenzie I, Strittmatter S. Reduced progranulin increases tau and α-synuclein inclusions and alters mouse tauopathy phenotypes via glucocerebrosidase. Nature Communications 2024, 15: 1434. PMID: 38365772, PMCID: PMC10873339, DOI: 10.1038/s41467-024-45692-3.Peer-Reviewed Original ResearchConceptsTau inclusionsComorbid proteinopathiesTau aggregation in vitroPromotes tau aggregation in vitroAlzheimer's diseaseProgranulin reductionTDP-43 proteinopathyTauopathy phenotypeTau aggregationAD-tauHuman tauopathiesNeurofibrillary tanglesTauopathy miceReduction of progranulinPurified GlcCerTDP-43Concomitant accumulationAggregation in vitroAssociated with synucleinopathiesNeurodegenerative disordersProteinopathiesGCase inhibitionTauGCaseGlcCer
2023
PET Imaging of Rho‐Associated Protein Kinase 2 in A Mouse Model of Alzheimer’s Disease
Zheng C, Nicholson L, Chen B, Toyonaga T, Liu M, Strittmatter S, Carson R, Huang Y, Cai Z. PET Imaging of Rho‐Associated Protein Kinase 2 in A Mouse Model of Alzheimer’s Disease. Alzheimer's & Dementia 2023, 19 DOI: 10.1002/alz.081695.Peer-Reviewed Original ResearchAPP/PS1 micePS1 miceWT miceCentral nervous systemTime-activity curvesAlzheimer's diseaseAPP/PS1 transgenic miceAPP/PS1 transgenic AD miceMouse brainAge-matched WT controlsPS1 transgenic miceAPP/PS1Transgenic AD miceDynamic PET imaging dataROCK2 protein expressionAD drug discoveryHigh tracer uptakeMin post injectionPET imaging resultsExpression levelsReference tissue model 2PET imaging dataProtein expression levelsAD miceRegional time-activity curvesNeuronal transcriptome, tau and synapse loss in Alzheimer’s knock-in mice require prion protein
Stoner A, Fu L, Nicholson L, Zheng C, Toyonaga T, Spurrier J, Laird W, Cai Z, Strittmatter S. Neuronal transcriptome, tau and synapse loss in Alzheimer’s knock-in mice require prion protein. Alzheimer's Research & Therapy 2023, 15: 201. PMID: 37968719, PMCID: PMC10647125, DOI: 10.1186/s13195-023-01345-z.Peer-Reviewed Original ResearchConceptsSynapse lossDKI miceTau accumulationBrain immune activationNeural network dysfunctionPhospho-tau accumulationAccumulation of tauNeuronal genesInflammatory markersAD miceAβ levelsPrion proteinDystrophic neuritesImmune activationTau pathologyNeuronal gene expressionAmyloid-β OligomersGliotic reactionNetwork dysfunctionBehavioral deficitsSynaptic failureAD modelMemory impairmentAlzheimer's diseaseFunction of ageDevelopment of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial
Howard E, Strittmatter S. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Current Opinion In Neurology 2023, 36: 516-522. PMID: 37865850, PMCID: PMC10841037, DOI: 10.1097/wco.0000000000001205.Peer-Reviewed Original ResearchConceptsSpinal cord injuryChronic cervical spinal cord injuryCervical spinal cord injuryRecent clinical trialsCentral nervous systemClinical trialsAnimal studiesNeural repairChronic spinal cord injuryIncomplete spinal cord injuryTraumatic spinal cord injuryAdult mammalian central nervous systemContusion spinal cord injuryTreatment-naïve patientsSpinal cord traumaMammalian central nervous systemNeural repair therapiesUpper extremity strengthNonhuman primate studiesReceptor 1 pathwayNeurological recoveryNeurological deficitsCord traumaMedical therapyChronic stageAmino-terminal proteolytic fragment of the axon growth inhibitor Nogo-A (Rtn4A) is upregulated by injury and promotes axon regeneration
Sekine Y, Wang X, Kikkawa K, Honda S, Strittmatter S. Amino-terminal proteolytic fragment of the axon growth inhibitor Nogo-A (Rtn4A) is upregulated by injury and promotes axon regeneration. Journal Of Biological Chemistry 2023, 299: 105232. PMID: 37690690, PMCID: PMC10622843, DOI: 10.1016/j.jbc.2023.105232.Peer-Reviewed Original ResearchConceptsAxon regenerationCentral nervous system injuryPersistent neurological deficitsCerebral cortical neuronsNervous system injuryNeurological deficitsSystem injuryCNS injuryCortical neuronsAmino-terminal fragmentInjuryExtracellular actionPhysiological productionNogoInhibitory proteinMiceNeuronsInhibitory domainOverexpression increasesVaried resultsProteolytic fragmentsAxotomyExpressionNogoAGene targetingAssociations of Sex, Race, and Apolipoprotein E Alleles With Multiple Domains of Cognition Among Older Adults
Walters S, Contreras A, Eissman J, Mukherjee S, Lee M, Choi S, Scollard P, Trittschuh E, Mez J, Bush W, Kunkle B, Naj A, Peterson A, Gifford K, Cuccaro M, Cruchaga C, Pericak-Vance M, Farrer L, Wang L, Haines J, Jefferson A, Kukull W, Keene C, Saykin A, Thompson P, Martin E, Bennett D, Barnes L, Schneider J, Crane P, Hohman T, Dumitrescu L, Abner E, Adams P, Aguirre A, Albert M, Albin R, Allen M, Alvarez L, Apostolova L, Arnold S, Asthana S, Atwood C, Ayres G, Barber R, Barnes L, Barral S, Bartlett J, Beach T, Becker J, Beecham G, Benchek P, Bennett D, Bertelson J, Biber S, Bird T, Blacker D, Boeve B, Bowen J, Boxer A, Brewer J, Burke J, Burns J, Bush W, Buxbaum J, Byrd G, Cantwell L, Cao C, Carlsson C, Carrasquillo M, Chan K, Chase S, Chen Y, Chesselet M, Chin N, Chui H, Chung J, Craft S, Crane P, Cruchaga C, Cuccaro M, Culhane J, Cullum C, Darby E, Davis B, DeCarli C, DeToledo J, Dickson D, Dobbins N, Duara R, Ertekin-Taner N, Evans D, Faber K, Fairchild T, Fallin D, Fallon K, Fardo D, Farlow M, Farrell J, Farrer L, Fernandez-Hernandez V, Foroud T, Frosch M, Galasko D, Gamboa A, Geschwind D, Ghetti B, Goate A, Grabowski T, Graff-Radford N, Griswold A, Haines J, Hakonarson H, Hall K, Hall J, Hamilton R, Hamilton-Nelson K, Han X, Hardy J, Harrell L, Head E, Henderson V, Hernandez M, Honig L, Huebinger R, Huentelman M, Hulette C, Hyman B, Hynan L, Ibanez L, De Jager P, Jarvik G, Jayadev S, Jin L, Johnson K, Johnson L, Jun G, Kamboh M, Kang M, Karydas A, Kathryn G, Katz M, Kauwe J, Kaye J, Keene C, Keller B, Khaleeq A, Kim R, Knebl J, Kowall N, Kramer J, Kukull W, Kunkle B, Kuzma A, LaFerla F, Lah J, Larson E, Lerch M, Lerner A, Leung Y, Leverenz J, Levey A, Li D, Lieberman A, Lipton R, Lopez O, Lunetta K, Lyketsos C, Mains D, Manly J, Mark L, Marquez D, Marson D, Martin E, Masliah E, Massman P, Masukar A, Mayeux R, McCormick W, McCurry S, McDonough S, McKee A, Mesulam M, Mez J, Miller B, Miller C, Mock C, Moghekar A, Montine T, Monuki E, Mooney S, Morris J, Mukherjee S, Myers A, Naj A, Nguyen T, O'Bryant S, Ormsby K, Ory M, Palmer R, Parisi J, Paulson H, Pavlik V, Paydarfar D, Perez V, Pericak-Vance M, Peterson R, Polk M, Qu L, Quiceno M, Quinn J, Raj A, Rajabli F, Ramanan V, Reiman E, Reisch J, Reitz C, Ringman J, Robertson E, Rodriguear M, Rogaeva E, Rosen H, Rosenberg R, Royall D, Sano M, Saykin A, Schellenberg G, Schneider J, Schneider L, Seeley W, Sherva R, Shibata D, Small S, Smith A, Smith J, Song Y, Spina S, St George-Hyslop P, Stern R, Stevens A, Strittmatter S, Sultzer D, Swerdlow R, Tilson J, Tosto G, Trojanowski J, Troncoso J, Tsuang D, Valladares O, Vance J, Van Deerlin V, Van Eldik L, Vardarajan B, Vassar R, Vinters H, Vonsattel J, Wang L, Weintraub S, Welsh-Bohmer K, Wheeler N, Wijsman E, Wilhelmsen K, Williams S, Williams B, Williamson J, Wilms H, Wingo T, Woltjer R, Woon M, Younkin S, Yu L, Zhao Y, Zhou X, Zhu C, Adegoke O, Aisen P, Apostolova L, Ashford M, Beckett L, Bernard M, Bernhardt H, Borowski B, Cabrera Y, Cairns N, Carrillo M, Chen K, Choe M, Clanton T, Coker G, Conti C, Crawford K, Das S, Donohue M, Fleisher A, Flenneiken D, Fletcher E, Fockler J, Forghanian-Arani A, Foroud T, Fox N, Franklin E, Gessert D, González H, Green R, Gunter J, Harvey D, Hergesheimer L, Ho C, Householder E, Hsaio J, Jack C, Jackson J, Jagust W, Jahanshad N, Jimenez G, Jin C, Jones D, Kantarci K, Khachaturian Z, Knaack A, Koeppe R, Kormos A, Landau S, Mahboubi P, Malone I, Masterman D, Mathis C, Miller G, Montine T, Moore S, Morris J, Neu S, Neuhaus J, Nho K, Nir T, Nosheny R, Nudelman K, Okonkwo O, Perrin R, Pizzola J, Potter W, Rafii M, Raman R, Reid R, Reiman E, Risacher S, Rossi Chen S, Ryan L, Salazar J, Saykin A, Schwarz C, Senjem M, Shaffer E, Shaw L, Shen L, Silverberg N, Smith S, Taylor-Reinwald L, Thal L, Thomopoulos S, Thompson P, Toga A, Tosun-Turgut D, Trojanowski J, Truran Sacrey D, Veitch D, Vemuri P, Walter S, Ward C, Weiner M, Wilmes K, Yushkevich P, Zimmerman C. Associations of Sex, Race, and Apolipoprotein E Alleles With Multiple Domains of Cognition Among Older Adults. JAMA Neurology 2023, 80: 929-939. PMID: 37459083, PMCID: PMC10352930, DOI: 10.1001/jamaneurol.2023.2169.Peer-Reviewed Original ResearchSoluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial
Maynard G, Kannan R, Liu J, Wang W, Lam T, Wang X, Adamson C, Hackett C, Schwab J, Liu C, Leslie D, Chen D, Marino R, Zafonte R, Flanders A, Block G, Smith E, Strittmatter S. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. The Lancet Neurology 2023, 22: 672-684. PMID: 37479373, PMCID: PMC10410101, DOI: 10.1016/s1474-4422(23)00215-6.Peer-Reviewed Original ResearchConceptsUpper extremity motor scoreSpinal cord injuryChronic spinal cord injuryTreatment-related adverse eventsAdverse eventsDay 169Intrathecal dosesCord injuryClinical trialsAmerican Spinal Injury Association Impairment Scale (AIS) gradeCervical traumatic spinal cord injuryChronic cervical spinal cord injuryCommon treatment-related adverse eventsCervical spinal cord injurySevere spinal cord injuryTraumatic spinal cord injuryPost-hoc subgroup analysesPersistent neurological deficitsDouble-blind comparisonKey secondary objectiveNational InstituteOpen labelAdvancing Translational SciencesPlacebo groupNeurological deficitsTMEM106B Puncta Is Increased in Multiple Sclerosis Plaques, and Reduced Protein in Mice Results in Delayed Lipid Clearance Following CNS Injury
Shafit-Zagardo B, Sidoli S, Goldman J, DuBois J, Corboy J, Strittmatter S, Guzik H, Edema U, Arackal A, Botbol Y, Merheb E, Nagra R, Graff S. TMEM106B Puncta Is Increased in Multiple Sclerosis Plaques, and Reduced Protein in Mice Results in Delayed Lipid Clearance Following CNS Injury. Cells 2023, 12: 1734. PMID: 37443768, PMCID: PMC10340176, DOI: 10.3390/cells12131734.Peer-Reviewed Original ResearchConceptsAxonal damageMultiple sclerosisRelapsing-remitting multiple sclerosisHypomorphic miceExperimental autoimmune encephalomyelitisRelapsing-remitting MSNormal-appearing white matterMultiple sclerosis plaquesWhite matter plaquesNon-neurologic controlsWild-type miceBrains of individualsLipid droplet accumulationAutoimmune encephalomyelitisMyelin oligodendrocyteCNS injuryLipid clearanceSpinal cordNeuronal integrityTransmembrane protein 106BWhite matterAlzheimer's diseaseMice resultsDroplet accumulationPlaquesLongitudinal simultaneous fMRI and mesoscale calcium imaging in a mouse model of Alzheimer’s disease
Mandino F, Shen X, Desrosiers-Gregoire G, O'Connor D, Mukherjee B, DeLuca K, Hamodi A, Owens A, Ha Y, Qu A, Onofrey J, Papademetris X, Chakravarty M, Crair M, Strittmatter S, Lake E. Longitudinal simultaneous fMRI and mesoscale calcium imaging in a mouse model of Alzheimer’s disease. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/3914.Peer-Reviewed Original ResearchMouse model of Alzheimer's diseaseModel of Alzheimer's diseaseMesoscale calcium imagingAlzheimer's diseaseBehavioral deficitsExcitatory neural activityMultimodal neuroimagingBOLD signalSimultaneous fMRINeuroimaging changesNeural activityBOLD fMRIPreliminary evidenceCalcium imagingClinically accessible biomarkersMesoscopic calcium imagingSpontaneous activityFMRINeuroimagingBOLDDeficitsComplex relationshipNogo receptor-Fc delivered by haematopoietic cells enhances neurorepair in a multiple sclerosis model
Ye S, Theotokis P, Lee J, Kim M, Nheu D, Ellen O, Bedford T, Ramanujam P, Wright D, McDonald S, Alrehaili A, Bakhuraysah M, Kang J, Siatskas C, Tremblay C, Curtis D, Grigoriadis N, Monif M, Strittmatter S, Petratos S. Nogo receptor-Fc delivered by haematopoietic cells enhances neurorepair in a multiple sclerosis model. Brain Communications 2023, 5: fcad108. PMID: 37091588, PMCID: PMC10116608, DOI: 10.1093/braincomms/fcad108.Peer-Reviewed Original ResearchExperimental autoimmune encephalomyelitisAutoimmune encephalomyelitisHaematopoietic stem cellsFc fusion proteinMultiple sclerosisAnimal modelsExperimental autoimmune encephalomyelitis lesionsCNS-infiltrating macrophagesStem cellsMultiple sclerosis modelInflammatory cell infiltrateNogo receptor 1Spinal cord injuryContext of neuroinflammationRecipient female miceImmune cell lineagesHigh-affinity receptorDisease-specific mannerDifferentiated phagocytesNeurological recoveryExtensive demyelinationAxonal damageCell infiltrateCNS lesionsNeurological declineDecreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16
Zheng C, Toyonaga T, Chen B, Nicholson L, Mennie W, Liu M, Spurrier J, Deluca K, Strittmatter S, Carson R, Huang Y, Cai Z. Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16. Frontiers In Neurology 2023, 14: 1045644. PMID: 36846134, PMCID: PMC9945093, DOI: 10.3389/fneur.2023.1045644.Peer-Reviewed Original ResearchStandardized uptake value ratioDistribution volume ratioAlzheimer's diseaseSimplified reference tissue modelSynapse lossMouse modelAPP/PS1 miceAge-matched wild-type miceAPPswe/PS1dE9 mouse modelAPP/PS1 AD mouse modelSlow brain kineticsAD mouse modelSynaptic vesicle glycoprotein 2APseudo-reference regionWild-type miceUptake value ratioMonths of ageDifferent brain regionsDifferent imaging windowsFamilial Alzheimer's diseasePET imaging studiesReference tissue modelPS1 miceBrain stemBrain kineticsConcerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions
de Arce K, Ribic A, Chowdhury D, Watters K, Thompson G, Sanganahalli B, Lippard E, Rohlmann A, Strittmatter S, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nature Communications 2023, 14: 459. PMID: 36709330, PMCID: PMC9884278, DOI: 10.1038/s41467-023-36042-w.Peer-Reviewed Original ResearchConceptsPrefrontal cortexDKO miceSynCAM 1Aberrant neuronal activityDendritic spine numberPrefrontal cortex synapsesSynapse organizersSynapse numberMature brainNeuronal activityKnockout miceSpine numberSynapse developmentCognitive functionTrans-synaptic complexesImmunoglobulin family membersMiceFamily membersSynapsesLRRTM1Behavioral domainsHippocampusCognitive tasksConcerted roleCortexPrion Protein Complex with mGluR5 Mediates Amyloid-ß Synaptic Loss in Alzheimer’s Disease
Roseman G, Fu L, Strittmatter S. Prion Protein Complex with mGluR5 Mediates Amyloid-ß Synaptic Loss in Alzheimer’s Disease. 2023, 467-481. DOI: 10.1007/978-3-031-20565-1_22.ChaptersAlzheimer's diseaseMouse modelAD transgenic mouse modelLong-term potentiation impairmentPrimary histopathological featureAD mouse modelAmyloid-beta plaquesTransgenic mouse modelPotential therapeutic targetSynaptic lossHistopathological featuresAD pathophysiologyNeuronal dysfunctionSynapse densityCognitive dysfunctionNeurofibrillary tanglesTherapeutic targetMemory deficitsCellular prion proteinMGluR5DiseaseCell death characteristicCommon formSynaptotoxicityDysfunction
2022
Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2
Rodriguez CM, Bechek SC, Jones GL, Nakayama L, Akiyama T, Kim G, Solow-Cordero DE, Strittmatter SM, Gitler AD. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. Cell Reports 2022, 41: 111505. PMID: 36288715, PMCID: PMC9664481, DOI: 10.1016/j.celrep.2022.111505.Peer-Reviewed Original ResearchConceptsAmyotrophic lateral sclerosisSpinocerebellar ataxia type 2Nogo receptorAtaxin-2 levelsNovel therapeutic targetNeurodegenerative disease amyotrophic lateral sclerosisGene-based therapeutic strategiesDisease amyotrophic lateral sclerosisNerve injuryAtaxin-2Axonal regenerationAxonal regrowthLateral sclerosisTherapeutic strategiesHuman neuronsKnockout miceTherapeutic targetPotential treatmentType 2Protein levelsPotent modifierProtein ataxin-2Additional strategiesMiceRNA screen