2016
Early Activation of Experience-Independent Dendritic Spine Turnover in a Mouse Model of Alzheimer's Disease.
Heiss JK, Barrett J, Yu Z, Haas LT, Kostylev MA, Strittmatter SM. Early Activation of Experience-Independent Dendritic Spine Turnover in a Mouse Model of Alzheimer's Disease. Cerebral Cortex 2016, 27: 3660-3674. PMID: 27365298, PMCID: PMC6059166, DOI: 10.1093/cercor/bhw188.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlzheimer DiseaseAmyloid beta-Protein PrecursorAnalysis of VarianceAnimalsCerebral CortexDendritic SpinesDisease Models, AnimalGene Expression ProfilingGreen Fluorescent ProteinsHippocampusHumansImaging, Three-DimensionalImmunoprecipitationMiceMice, Inbred C57BLMice, TransgenicMutationNeuroimagingPlaque, AmyloidPresenilin-1Prion ProteinsProto-Oncogene Proteins c-fosSensory DeprivationTime FactorsVibrissaeConceptsAPP/PS1 miceDendritic spine turnoverSpine turnoverAlzheimer's diseasePS1 miceAged APP/PS1 miceYoung APP/PS1 miceAPP/PS1 mouse brainSoluble Aβ oligomersLipid-metabolizing genesAPPswe/Synaptic lossCerebral cortexSynapse densityAβ plaquesSynaptic dysregulationLack responsivenessMouse modelDendritic spinesPersistent spinesSynapse turnoverPlaque formationMouse brainYounger ageCellular prion protein
2012
Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation
Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain 2012, 135: 1794-1818. PMID: 22544872, PMCID: PMC3589918, DOI: 10.1093/brain/aws100.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnalysis of VarianceAnimalsAntibodiesAxonsCD3 ComplexCell Line, TumorDemyelinating DiseasesDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFemaleGene Expression RegulationGlycoproteinsGPI-Linked ProteinsGreen Fluorescent ProteinsHumansImmunoprecipitationIntercellular Signaling Peptides and ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMiddle AgedMultiple SclerosisMutationMyelin ProteinsMyelin-Oligodendrocyte GlycoproteinNerve DegenerationNerve Tissue ProteinsNeuroblastomaNeurofilament ProteinsNogo Receptor 1Optic NervePeptide FragmentsPhosphorylationReceptors, Cell SurfaceRetinal Ganglion CellsSeverity of Illness IndexSilver StainingSpinal CordTau ProteinsTime FactorsTransduction, GeneticTubulinConceptsExperimental autoimmune encephalomyelitisAutoimmune encephalomyelitisMyelin oligodendrocyte glycoproteinMultiple sclerosisAxonal degenerationSpinal cordChronic active multiple sclerosis lesionsOptic nerve axonal degenerationNogo-66 receptor 1CRMP-2Axonal growth inhibitorsCollapsin response mediator protein 2Improved clinical outcomesSpinal cord neuronsRetinal ganglion cellsResponse mediator protein 2Central nervous systemViable therapeutic targetAdeno-associated viral vectorMultiple sclerosis lesionsClinical outcomesOptic nerveCord neuronsOligodendrocyte glycoproteinGanglion cells
2008
Release of MICAL Autoinhibition by Semaphorin-Plexin Signaling Promotes Interaction with Collapsin Response Mediator Protein
Schmidt EF, Shim SO, Strittmatter SM. Release of MICAL Autoinhibition by Semaphorin-Plexin Signaling Promotes Interaction with Collapsin Response Mediator Protein. Journal Of Neuroscience 2008, 28: 2287-2297. PMID: 18305261, PMCID: PMC2846290, DOI: 10.1523/jneurosci.5646-07.2008.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCell Adhesion MoleculesCell Line, TransformedChick EmbryoCytoskeletal ProteinsFlavin-Adenine DinucleotideGanglia, SpinalGenetic VectorsHIVHumansImmunoprecipitationIntracellular Signaling Peptides and ProteinsLIM Domain ProteinsMembrane GlycoproteinsMicrofilament ProteinsMixed Function OxygenasesMutationNerve Tissue ProteinsNeuritesNeuronsPeptide FragmentsProtein BindingSemaphorin-3ASemaphorinsSignal TransductionTransfectionConceptsCollapsin response mediator proteinsMediator proteinsCytoplasmic proteinsEnzymatic domainsCatalytic domainPlexin functionPlexin receptorsTerminal domainMICALPromotes interactionAxon guidanceNeuronal developmentAxonal guidanceEnzymatic activityProteinAutoinhibitionDomainPlexinsSignalingSemaphorinsActivatorAssociatesInteractionActivityActivation
2006
RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors
Togashi H, Schmidt EF, Strittmatter SM. RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors. Journal Of Neuroscience 2006, 26: 4961-4969. PMID: 16672672, PMCID: PMC2846289, DOI: 10.1523/jneurosci.0704-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCell Adhesion MoleculesCell DeathCell SizeCells, CulturedChick EmbryoCloning, MolecularCricetinaeCricetulusCytoskeletal ProteinsDose-Response Relationship, DrugDrug InteractionsEnzyme InhibitorsGanglia, SpinalGene ExpressionGreen Fluorescent ProteinsHumansImmunoprecipitationIn Situ Nick-End LabelingNerve Tissue ProteinsNeuritesNeuronsNeuropilin-1Nuclear ProteinsRan GTP-Binding ProteinSemaphorin-3ASignal TransductionTranscription Factor AP-1TransfectionTwo-Hybrid System TechniquesConceptsPlexin-A1Collapsin response mediator proteinsNervous system developmentReceptor complex consistingSignal transductionRanBPMMediator proteinsMicrotubule functionCell spreadingComplex consistingAxonal guidanceNeuronal cellsAxonal guidance cuesProteinGuidance cuesPlexinsAxonal outgrowthExpressionSema3ATransductionReceptorsDomainOverexpressionNeuropilinsSystem development