2016
Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease
Salazar SV, Strittmatter SM. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease. Biochemical And Biophysical Research Communications 2016, 483: 1143-1147. PMID: 27639648, PMCID: PMC5303667, DOI: 10.1016/j.bbrc.2016.09.062.Peer-Reviewed Original ResearchConceptsCellular prion proteinPrion proteinSignal transduction downstreamDisease pathophysiologyNeuronal surfaceMetabotropic glutamate receptor 5Neuronal cell surface moleculesGlutamate receptor 5Disease-associated stateAlzheimer's disease pathophysiologyAltered signal transductionTransduction downstreamSignal transductionGenetic evidenceSpecificity of bindingPyk2 kinaseCell surface moleculesFyn kinaseSynaptic dysfunctionAβO toxicitySynaptic transmissionMouse modelIntervention sitesReceptor 5Alzheimer's disease
2007
The CRMP Family of Proteins and Their Role in Sema3A Signaling
Schmidt EF, Strittmatter SM. The CRMP Family of Proteins and Their Role in Sema3A Signaling. Advances In Experimental Medicine And Biology 2007, 600: 1-11. PMID: 17607942, PMCID: PMC2853248, DOI: 10.1007/978-0-387-70956-7_1.Peer-Reviewed Original ResearchConceptsMonomeric G proteinsLarge intracellular domainNeuropilin-1Class A plexinsRepulsive axon guidance cuesCurrent knowledgeSema3A signalingVertebrate semaphorinsAxon guidance cuesCellular processesSignal transductionBinding partnerIntracellular domainMediator proteinsProtein turnoverCRMP proteinsF-actinCellular responsesCytosolic phosphoproteinG proteinsNeuronal differentiationRedox proteinsReceptor complexCellular effectsCell membrane
2006
RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors
Togashi H, Schmidt EF, Strittmatter SM. RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors. Journal Of Neuroscience 2006, 26: 4961-4969. PMID: 16672672, PMCID: PMC2846289, DOI: 10.1523/jneurosci.0704-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCell Adhesion MoleculesCell DeathCell SizeCells, CulturedChick EmbryoCloning, MolecularCricetinaeCricetulusCytoskeletal ProteinsDose-Response Relationship, DrugDrug InteractionsEnzyme InhibitorsGanglia, SpinalGene ExpressionGreen Fluorescent ProteinsHumansImmunoprecipitationIn Situ Nick-End LabelingNerve Tissue ProteinsNeuritesNeuronsNeuropilin-1Nuclear ProteinsRan GTP-Binding ProteinSemaphorin-3ASignal TransductionTranscription Factor AP-1TransfectionTwo-Hybrid System TechniquesConceptsPlexin-A1Collapsin response mediator proteinsNervous system developmentReceptor complex consistingSignal transductionRanBPMMediator proteinsMicrotubule functionCell spreadingComplex consistingAxonal guidanceNeuronal cellsAxonal guidance cuesProteinGuidance cuesPlexinsAxonal outgrowthExpressionSema3ATransductionReceptorsDomainOverexpressionNeuropilinsSystem development
1998
GAP‐43 Augmentation of G Protein‐Mediated Signal Transduction Is Regulated by Both Phosphorylation and Palmitoylation
Nakamura F, Strittmatter P, Strittmatter S. GAP‐43 Augmentation of G Protein‐Mediated Signal Transduction Is Regulated by Both Phosphorylation and Palmitoylation. Journal Of Neurochemistry 1998, 70: 983-992. PMID: 9489717, DOI: 10.1046/j.1471-4159.1998.70030983.x.Peer-Reviewed Original ResearchConceptsG protein activationG-protein mediated signal transductionProtein kinase C phosphorylation sitesG-protein-coupled receptor stimulationKinase C phosphorylation sitesProtein activationG-protein-coupled signalsNeuronal protein GAP-43C phosphorylation sitesSignal transduction processesProtein kinase CGrowth cone membranePhosphorylation sitesSignal transductionXenopus laevis oocytesGAP-43Transduction processesKinase CResidues 41Second domainLaevis oocytesCone membraneCalmodulinProtein GAP-43Oocytes
1996
Signal Transduction at the Neuronal Growth Cone
Strittmatter S. Signal Transduction at the Neuronal Growth Cone. The Neuroscientist 1996, 2: 83-86. DOI: 10.1177/107385849600200208.Peer-Reviewed Original ResearchSignal transductionG-protein-mediated transductionG proteinsHeterotrimeric G proteinsCell adhesion molecule familyGrowth conesNervous system developmentAdhesion molecule familyGrowth cone membraneNeuronal growth conesLigand-receptor interactionsGrowth cone motilityCadherin familyIntracellular proteinsCytoskeletal changesExtracellular moleculesMolecular understandingIntegrin familyTransductionMolecules inhibitoryDiffusible messengerMolecule familyCone motilityIntracellular eventsCone membrane
1993
GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes.
Strittmatter SM, Cannon SC, Ross EM, Higashijima T, Fishman MC. GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 5327-5331. PMID: 7685122, PMCID: PMC46709, DOI: 10.1073/pnas.90.11.5327.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAnimalsCalciumCattleChloride ChannelsFemaleGAP-43 ProteinGrowth SubstancesGTP-Binding ProteinsHumansInositol 1,4,5-TrisphosphateIon Channel GatingIon ChannelsKineticsMembrane GlycoproteinsMembrane PotentialsMembrane ProteinsNerve Tissue ProteinsOocytesReceptors, MuscarinicRecombinant ProteinsSignal TransductionXenopus laevisConceptsGAP-43Receptor transductionG protein-coupled receptor agonistsCalcium-activated chloride channelXenopus laevis oocytesProtein GAP-43Neuronal protein GAP-43Receptor agonistInjection of inositolLaevis oocytesReceptor stimulationOocyte responseGrowth cone motilityChloride channelsSignal transductionIntracellular regulatorsIntracellular signalsMolecular mechanismsTransductionOocytesHigh levelsAgonists