2018
The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injury
Sekine Y, Siegel CS, Sekine-Konno T, Cafferty WBJ, Strittmatter SM. The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injury. Science Signaling 2018, 11 PMID: 29615517, PMCID: PMC6179440, DOI: 10.1126/scisignal.aao4180.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCord injuryAxonal regenerationMid-thoracic spinal cordTraumatic spinal cord injuryPartial neurological recoveryTraumatic CNS injuryDorsal hemisectionNeurological recoveryPeptide nociceptinCNS injuryAxon sproutingORL1 agonistSelective blockadeSpinal cordLocomotor functionNociceptin receptorAxon regenerationNeural repairPrimary neuronsNgR1 proteinAxonal growthNull miceMRNA expressionORL1
2016
Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury
Wang X, Sekine Y, Byrne AB, Cafferty WB, Hammarlund M, Strittmatter SM. Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury. ENeuro 2016, 3: eneuro.0270-16.2016. PMID: 28032120, PMCID: PMC5187389, DOI: 10.1523/eneuro.0270-16.2016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBenzimidazolesCells, CulturedCerebral CortexDisease Models, AnimalFemaleIsoenzymesMaleMice, 129 StrainMice, Inbred C57BLMice, TransgenicMotor ActivityNerve RegenerationOptic Nerve InjuriesPoly (ADP-Ribose) Polymerase-1Poly(ADP-ribose) Polymerase InhibitorsRecovery of FunctionSpinal Cord InjuriesThoracic VertebraeConceptsOptic nerve crush injuryNerve crush injuryThoracic spinal cordAxonal regenerationSpinal cordDorsal hemisectionCrush injuryFunctional recoveryPARP inhibitorsMotor function recoveryRecovery of functionPoly (ADP-ribose) polymeraseClinical PARP inhibitorsNeurological recoveryShort hairpin RNACNS traumaCNS injuryFunction recoveryAxonal regrowthSystemic administrationPharmacodynamic actionAxon regenerationTraumatic damageTherapeutic efficacyNeurological trauma
2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repair
2009
Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord
Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM. Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. Journal Of Neuroscience 2009, 29: 15266-15276. PMID: 19955379, PMCID: PMC2855556, DOI: 10.1523/jneurosci.4650-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnalysis of VarianceAnimalsAxonsBehavior, AnimalBrain InjuriesCA1 Region, HippocampalCells, CulturedCholera ToxinEnzyme InhibitorsGanglia, SpinalGene Expression RegulationMedian NeuropathyMiceMice, Inbred C57BLMice, KnockoutMyelin ProteinsNerve RegenerationNeuronsNogo ProteinsPyridinesReceptors, Calcitonin Gene-Related PeptideRhizotomyRho-Associated KinasesSpinal Cord InjuriesTime FactorsVersicansConceptsSpinal cordCNS traumaFunctional recoveryBasso Mouse Scale scoresSpinal Cord Injury StudyAxonal growthDorsal root entry zoneDorsal root ganglion neuronsAdult mouse spinal cordAxonal growth inhibitorsSpinal cord hemisectionRoot entry zoneSpinal cord injuryCaudal spinal cordMouse spinal cordDorsal hemisectionRaphespinal axonsDorsal rhizotomyCrush injuryCord hemisectionCorticospinal axonsChondroitin sulfate proteoglycanCord injuryGanglion neuronsInjury paradigms
2008
Nogo-66 Receptor Antagonist Peptide (NEP1-40) Administration Promotes Functional Recovery and Axonal Growth After Lateral Funiculus Injury in the Adult Rat
Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FP, Lee DH, Rabacchi SA, Murray M. Nogo-66 Receptor Antagonist Peptide (NEP1-40) Administration Promotes Functional Recovery and Axonal Growth After Lateral Funiculus Injury in the Adult Rat. Neurorehabilitation And Neural Repair 2008, 22: 262-278. PMID: 18056009, PMCID: PMC2853251, DOI: 10.1177/1545968307308550.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalDenervationEfferent PathwaysFemaleGPI-Linked ProteinsGrowth ConesMyelin ProteinsNerve RegenerationNeuronal PlasticityNogo Receptor 1Peptide FragmentsPyramidal TractsRaphe NucleiRatsRats, Sprague-DawleyReceptors, Cell SurfaceRecovery of FunctionRed NucleusSpinal Cord InjuriesSpinal Nerve RootsTreatment OutcomeWallerian DegenerationConceptsNEP1-40 groupDorsal root axonsRST axonsRubrospinal axonsRubrospinal tractAxonal growthNEP1-40 treatmentPromotes Functional RecoveryCervical spinal cordDorsal hemisectionForelimb usageNEP1-40Corticospinal axonsFunctional recoveryIntrathecal deliveryLateral funiculusSpinal cordMotor functionOutcome measuresAdult ratsLesion siteOperated controlsWhite matterGait analysisAxons
2007
Functional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans
Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans. Journal Of Neuroscience 2007, 27: 2176-2185. PMID: 17329414, PMCID: PMC2848955, DOI: 10.1523/jneurosci.5176-06.2007.Peer-Reviewed Original ResearchConceptsChondroitin sulfate proteoglycanRole of CSPGsTransgenic miceSensory axon regenerationMotor function recoveryFunctional axonal regenerationCombination-based therapyEnzyme chondroitinase ABCSulfate proteoglycanDorsal hemisectionAxotomized neuronsDorsal rhizotomyCorticospinal axonsCNS injuryFunction recoveryMyelin inhibitorsAxonal regenerationAstrocytic scarLocal efficacyTraumatic injuryAxon regenerationLesion siteInhibitory moleculesFunctional regenerationChondroitinase ABC
2006
The Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth
Cafferty WB, Strittmatter SM. The Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth. Journal Of Neuroscience 2006, 26: 12242-12250. PMID: 17122049, PMCID: PMC2848954, DOI: 10.1523/jneurosci.3827-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAxonsBehavior, AnimalCalcitonin Gene-Related PeptideCentral Nervous SystemFunctional LateralityGlial Fibrillary Acidic ProteinMiceMice, Inbred C57BLMice, KnockoutMyelin Basic ProteinMyelin ProteinsNogo ProteinsProtein Kinase CPsychomotor PerformancePyramidal TractsReceptors, PeptideSignal TransductionConceptsAxonal growthCST regenerationSpinal cord dorsal hemisectionCervical gray matterRole of NogoCorticospinal tract axonsNogo-66 receptorVivo pharmacological studiesFine motor skillsDorsal hemisectionAffected forelimbCST axonsLesion modelUnilateral pyramidotomyGray matterPharmacological studiesReceptor pathwayNogoConflicting resultsMiceMotor skillsAxonsDifferent tractsGenetic assessmentPyramidotomy
2005
Effect of combined treatment with methylprednisolone and soluble Nogo‐66 receptor after rat spinal cord injury
Ji B, Li M, Budel S, Pepinsky RB, Walus L, Engber TM, Strittmatter SM, Relton JK. Effect of combined treatment with methylprednisolone and soluble Nogo‐66 receptor after rat spinal cord injury. European Journal Of Neuroscience 2005, 22: 587-594. PMID: 16101740, PMCID: PMC2846292, DOI: 10.1111/j.1460-9568.2005.04241.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAxonsBehavior, AnimalBiotinCells, CulturedChick EmbryoDextransDisease Models, AnimalDose-Response Relationship, DrugDrug InteractionsDrug Therapy, CombinationExploratory BehaviorFemaleGanglia, SpinalGPI-Linked ProteinsImmunoglobulin GLaminectomyMethylprednisoloneMyelin ProteinsMyelin SheathNerve RegenerationNeuronsNogo Receptor 1Pyramidal TractsRatsRats, Long-EvansReceptors, Cell SurfaceReceptors, PeptideRecombinant ProteinsRecovery of FunctionSpinal Cord InjuriesConceptsSpinal cord injuryCord injuryRat spinal cord injuryMP treatmentAdult central nervous systemThoracic dorsal hemisectionNovel experimental therapiesCorticospinal tract axonsRecovery of functionNogo-66 receptorNumber of axonsCentral nervous systemGrowth inhibitory effectsDorsal hemisectionBBB scoresAxonal sproutingFunctional recoveryBresnahan (BBB) scoringAxonal regenerationMotor neuronsExperimental therapiesMethylprednisoloneSynthetic glucocorticoidNervous systemAxonal growth
2004
Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury
Kim JE, Liu BP, Park JH, Strittmatter SM. Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury. Neuron 2004, 44: 439-451. PMID: 15504325, DOI: 10.1016/j.neuron.2004.10.015.Peer-Reviewed Original ResearchMeSH Keywords5,7-DihydroxytryptamineAnimalsAxonsBehavior, AnimalBlotting, NorthernBlotting, SouthernBrainCell CountCells, CulturedCloning, MolecularCornified Envelope Proline-Rich ProteinsDesipramineDisease Models, AnimalEvoked Potentials, MotorFemaleGanglia, SpinalGlial Fibrillary Acidic ProteinGlucoseGPI-Linked ProteinsGrowth ConesImmunohistochemistryMiceMice, Inbred C57BLMice, KnockoutMotor ActivityMyelin ProteinsMyelin SheathMyelin-Associated GlycoproteinNerve RegenerationNeuronsNogo ProteinsNogo Receptor 1Phospholipid EthersProteinsPyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSerotoninSerotonin AgentsSpinal CordSpinal Cord InjuriesTime FactorsConceptsAdult CNSNogo-66Spinal cord injuryAdult mammalian CNSNogo-66 receptorDorsal hemisectionDRG neuronsFunctional recoveryRubrospinal fibersCord injuryMyelin inhibitorsComplete transectionCorticospinal fibersMotor functionSpinal cordMotor impairmentAxon regenerationMammalian CNSAxonal growthAxonal outgrowthCNS myelinMiceInhibitory proteinInjuryGrowth cones