Skip to Main Content

Craig Crews, PhD

John C. Malone Professor of Molecular, Cellular, and Developmental Biology and Professor of Chemistry, of Pharmacology, and of Management; Executive Director, Yale Center for Molecular Discovery

Research Summary

We use a combination of biochemistry, molecular biology, and bio-organic chemistry to explore different aspects of  cell biology. Different projects include the development of novel small molecules to control intracellular processes such as protein homeostasis and signal transduction.

Extensive Research Description

We develop novel reagents and methodologies, which will allow us to explore new areas in cell biology. This 'chemical genetic' approach uses biologically active small molecules to control various intracellular processes. For example we developed the PROTAC technology that decrease target protein levels within cells by inducing their proteolysis via the 26S proteasome. A goal of this research is to develop novel methodologies that would allow for small molecule control of the 'undruggable proteome'.

Coauthors

Research Interests

Biochemistry; Biology; Chemistry; Cell Biology; Neoplasms; Pharmacology; Drugs, Investigational; Proteasome Endopeptidase Complex; Proteasome Inhibitors

Research Image

Selected Publications

  • Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancerSnyder L, Neklesa T, Chen X, Dong H, Ferraro C, Gordon D, Macaluso J, Pizzano J, Wang J, Willard R, Vitale N, Peck R, Moore M, Crews C, Houston J, Crew A, Taylor I. Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer Cancer Research 2021, 81: 43-43. DOI: 10.1158/1538-7445.am2021-43.
  • Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancerSnyder L, Flanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Cadelina G, Bradley J, Rousseau E, Chandler J, Willard R, Pizzano J, Crews C, Crew A, Houston J, Moore M, Peck R, Taylor I. Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer Cancer Research 2021, 81: 44-44. DOI: 10.1158/1538-7445.am2021-44.
  • Chapter 1 PROTAC-mediated Target Degradation: A Paradigm Changer in Drug Discovery?Cromm P, Crews C, Weinmann H. Chapter 1 PROTAC-mediated Target Degradation: A Paradigm Changer in Drug Discovery? 2020, 1-13. DOI: 10.1039/9781839160691-00001.
  • O5‐04‐05: A NEW THERAPEUTIC STRATEGY FOR TAUOPATHIES: DISCOVERY OF HIGHLY POTENT BRAIN PENETRANT PROTACTM DEGRADER MOLECULES THAT TARGET PATHOLOGIC TAU PROTEIN SPECIESCacace A, Chandler J, Flanagan J, Berlin M, Cadelina G, Pizzano J, Bookbinder M, Crews C, Crew A, Taylor I, Houston J. O5‐04‐05: A NEW THERAPEUTIC STRATEGY FOR TAUOPATHIES: DISCOVERY OF HIGHLY POTENT BRAIN PENETRANT PROTACTM DEGRADER MOLECULES THAT TARGET PATHOLOGIC TAU PROTEIN SPECIES Alzheimer's & Dementia 2019, 15: p1624-p1624. DOI: 10.1016/j.jalz.2019.06.4856.
  • ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Snyder L, Willard R, Vitale N, Pizzano J, Gordon D, Bookbinder M, Macaluso J, Dong H, Ferraro C, Wang G, Wang J, Crews C, Houston J, Crew A, Taylor I. ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2019, 37: 259-259. DOI: 10.1200/jco.2019.37.7_suppl.259.
  • Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancerFlanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Cadelina G, Bradley J, Rousseau E, Willard R, Pizzano J, Crews C, Crew A, Taylor I, Houston J. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer Cancer Research 2019, 79: p5-04-18-p5-04-18. DOI: 10.1158/1538-7445.sabcs18-p5-04-18.
  • Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancerNeklesa T, Snyder L, Willard R, Vitale N, Raina K, Pizzano J, Gordon D, Bookbinder M, Macaluso J, Dong H, Liu Z, Ferraro C, Wang G, Wang J, Crews C, Houston J, Crew A, Taylor I. Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancer Cancer Research 2018, 78: 5236-5236. DOI: 10.1158/1538-7445.am2018-5236.
  • An oral androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Snyder L, Willard R, Vitale N, Raina K, Pizzano J, Gordon D, Bookbinder M, Macaluso J, Dong H, Liu Z, Ferraro C, Wang G, Wang J, Crews C, Houston J, Crew A, Taylor I. An oral androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2018, 36: 381-381. DOI: 10.1200/jco.2018.36.6_suppl.381.
  • Abstract P4-04-04: Identification and development of oral estrogen receptor PROTAC degraders for breast cancerFlanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Bradley J, Rousseau E, Willard R, Crews C, Crew A, Taylor I, Houston J. Abstract P4-04-04: Identification and development of oral estrogen receptor PROTAC degraders for breast cancer Cancer Research 2018, 78: p4-04-04-p4-04-04. DOI: 10.1158/1538-7445.sabcs17-p4-04-04.
  • BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALLPiya S, Mu H, Bhattacharya S, McQueen T, Davis R, Ruvolo V, Baran N, Qian Y, Raina K, Crews C, You M, McKay P, Konopleva M, Kantarjian H, Andreeff M, Borthakur G. BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALL Blood 2017, 130: 716-716. DOI: 10.1182/blood.v130.suppl_1.716.716.
  • Abstract 5067: BET protein proteolysis targeting chimera (BETP-PROTACs) exert more potent activity than BETP bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cellsSaenz D, Fiskus W, Raina K, Manshouri T, Coleman K, Qian Y, Crew A, Shen A, Mill C, Sun B, Kim M, Nowak A, Verstovsek S, Crews C, Bhalla K. Abstract 5067: BET protein proteolysis targeting chimera (BETP-PROTACs) exert more potent activity than BETP bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cells Cancer Research 2017, 77: 5067-5067. DOI: 10.1158/1538-7445.am2017-5067.
  • Abstract 5637: An oral Androgen Receptor PROTAC degrader for prostate cancerNeklesa T, Snyder L, Bookbinder M, Chen X, Crew A, Crews C, Dong H, Gordon D, Macaluso J, Raina K, Rossi A, Taylor I, Vitale N, Wang J, Willard R, Zimmermann K. Abstract 5637: An oral Androgen Receptor PROTAC degrader for prostate cancer Cancer Research 2017, 77: 5637-5637. DOI: 10.1158/1538-7445.am2017-5637.
  • Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target ProteinsColeman K, Crews C. Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target Proteins Annual Review Of Cancer Biology 2017, 2: 1-18. DOI: 10.1146/annurev-cancerbio-030617-050430.
  • An oral androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Snyder L, Bookbinder M, Chen X, Crew A, Crews C, Dong H, Gordon D, Raina K, Rossi A, Taylor I, Vitale N, Wang J, Willard R, Zimmermann K. An oral androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2017, 35: 273-273. DOI: 10.1200/jco.2017.35.6_suppl.273.
  • Abstract S4-03: Targeted and selective degradation of estrogen receptor (ER) alpha by PROTACsFlanagan J, Rossi A, Anderoli M, Willard R, Gordon D, Harling J, Churcher I, Smith I, Zinn N, Bantscheff M, Crews C, Crew A, Coleman K, Winkler J, Qian Y. Abstract S4-03: Targeted and selective degradation of estrogen receptor (ER) alpha by PROTACs Cancer Research 2017, 77: s4-03-s4-03. DOI: 10.1158/1538-7445.sabcs16-s4-03.
  • ChemInform Abstract: Expeditious Synthesis of Isoquinolones and Isocoumarins with a Vinyl Borane as an Acetylene Equivalent.Toure M, Jaime‐Figueroa S, Burslem G, Crews C. ChemInform Abstract: Expeditious Synthesis of Isoquinolones and Isocoumarins with a Vinyl Borane as an Acetylene Equivalent. ChemInform 2016, 47: no-no. DOI: 10.1002/chin.201652057.
  • Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML CellsSaenz D, Fiskus W, Raina K, Manshouri T, Coleman K, Winkler J, Qian Y, Crew A, Shen A, Mill C, Sun B, Verstovsek S, Crews C, Bhalla K. Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML Cells Blood 2016, 128: 747-747. DOI: 10.1182/blood.v128.22.747.747.
  • BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825, Causes Sustained Degradation of BRD4 and Modulation of Chemokine Receptors, Cell Adhesion and Metabolic Targets in Leukemia Resulting in Profound Anti-Leukemic EffectsPiya S, Bhattacharya S, Mu H, Lorenzi P, McQueen T, Davis E, Ruvolo V, Baran N, Qian Y, Crews C, Kantarjian H, Andreeff M, Borthakur G. BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825, Causes Sustained Degradation of BRD4 and Modulation of Chemokine Receptors, Cell Adhesion and Metabolic Targets in Leukemia Resulting in Profound Anti-Leukemic Effects Blood 2016, 128: 748-748. DOI: 10.1182/blood.v128.22.748.748.
  • Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma CellsSun B, Fiskus W, Zhang L, Raina K, Coleman K, Winkler J, Qian Y, Crew A, Shen A, Saenz D, Mill C, Wang M, Crews C, Bhalla K. Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma Cells Blood 2016, 128: 1058-1058. DOI: 10.1182/blood.v128.22.1058.1058.
  • 15 PROTAC BET degraders are more broadly effective than BET inhibitorsWinkler J, Raina K, Altieri M, Dong H, Wang J, Chen X, Crew A, Crews C, Qian Y, Kleinfield R, Coleman K. 15 PROTAC BET degraders are more broadly effective than BET inhibitors European Journal Of Cancer 2016, 69: s10. DOI: 10.1016/s0959-8049(16)32621-1.
  • Abstract 4710: BRD4 degradation by PROTACs represents a more effective therapeutic strategy than BRD4 inhibitors in ovarian cancerRaina K, Lu J, Qian Y, Altieri M, Dong H, Wang J, Chen X, Crew A, Coleman K, Crews C, Winkler J. Abstract 4710: BRD4 degradation by PROTACs represents a more effective therapeutic strategy than BRD4 inhibitors in ovarian cancer Cancer Research 2016, 76: 4710-4710. DOI: 10.1158/1538-7445.am2016-4710.
  • ChemInform Abstract: Small‐Molecule PROTACS: New Approaches to Protein DegradationToure M, Crews C. ChemInform Abstract: Small‐Molecule PROTACS: New Approaches to Protein Degradation ChemInform 2016, 47: no-no. DOI: 10.1002/chin.201613266.
  • ARV-330: Androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Jin M, Crew A, Rossi A, Willard R, Dong H, Siu K, Wang J, Gordon D, Chen X, Ferraro C, Crews C, Coleman K, Winkler J. ARV-330: Androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2016, 34: 267-267. DOI: 10.1200/jco.2016.34.2_suppl.267.
  • BRD4 Degradation By Protacs Represents a More Effective Therapeutic Strategy Than BRD4 Inhibitors in DLBCLLu J, Qian Y, Raina K, Altieri M, Dong H, Wang J, Chen X, Crew A, Coleman K, Crews C, Winkler J. BRD4 Degradation By Protacs Represents a More Effective Therapeutic Strategy Than BRD4 Inhibitors in DLBCL Blood 2015, 126: 2050-2050. DOI: 10.1182/blood.v126.23.2050.2050.
  • Abstract PR08: ARV-330: An androgen receptor PROTAC degrader for prostate cancerWinkler J, Jin M, Crew A, Rossi A, Willard R, Dong H, Siu K, Wang J, Gordon D, Chen X, Ferraro C, Crews C, Coleman K, Neklesa T. Abstract PR08: ARV-330: An androgen receptor PROTAC degrader for prostate cancer Molecular Cancer Therapeutics 2015, 14: pr08-pr08. DOI: 10.1158/1535-7163.targ-15-pr08.
  • Modulares PROTAC‐Design zum Abbau von onkogenem BCR‐ABLLai A, Toure M, Hellerschmied D, Salami J, Jaime‐Figueroa S, Ko E, Hines J, Crews C. Modulares PROTAC‐Design zum Abbau von onkogenem BCR‐ABL Angewandte Chemie 2015, 128: 818-821. DOI: 10.1002/ange.201507634.
  • Abstract LB-010: Hijacking the E3 ubiquitin ligase cereblon to create efficient BRD4 degradersLu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Winkler J, Crew A, Coleman K, Hines J, Crews C. Abstract LB-010: Hijacking the E3 ubiquitin ligase cereblon to create efficient BRD4 degraders 2015, lb-010-lb-010. DOI: 10.1158/1538-7445.am2015-lb-010.
  • Abstract LB-097: Targeted degradation of the androgen receptor in prostate cancerJin M, Winkler J, Coleman K, Crew A, Rossi A, Willard R, Dong H, Siu K, Wang J, Gordon D, Chen X, Ferraro C, Crews C, Neklesa T. Abstract LB-097: Targeted degradation of the androgen receptor in prostate cancer 2015, lb-097-lb-097. DOI: 10.1158/1538-7445.am2015-lb-097.
  • Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic TaggingGustafson J, Neklesa T, Cox C, Roth A, Buckley D, Tae H, Sundberg T, Stagg D, Hines J, McDonnell D, Norris J, Crews C. Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging Angewandte Chemie 2015, 127: 9795-9798. DOI: 10.1002/ange.201503720.
  • BRD4 degraders produce long-lasting loss of BRD4 Ppotein and robust efficacy in Burkitt’s lymphoma cells.Coleman K, Lu J, Qian Y, Altieri M, Raina K, Dong H, Wang J, Hines J, Crew A, Crews C. BRD4 degraders produce long-lasting loss of BRD4 Ppotein and robust efficacy in Burkitt’s lymphoma cells. Journal Of Clinical Oncology 2015, 33: 8557-8557. DOI: 10.1200/jco.2015.33.15_suppl.8557.
  • Characterization of a Small‐molecule Modulator of IRE1α ActivitySalami‐Oyenuga J, Raina K, Crews C. Characterization of a Small‐molecule Modulator of IRE1α Activity The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.723.2.
  • Small molecule‐induced catalytic ubiquitination of non‐natural substratesBondeson D, Pancevac C, Kruidenier L, Carter P, Churcher I, Crews C. Small molecule‐induced catalytic ubiquitination of non‐natural substrates The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.573.43.
  • Specific Induction of Golgi Stress by Targeted Protein DestabilizationSerebrenik Y, Crews C. Specific Induction of Golgi Stress by Targeted Protein Destabilization The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.723.5.
  • Exploring Biology with Small Organic MoleculesAberle N, Crews C. Exploring Biology with Small Organic Molecules 2012, 10-25. DOI: 10.1017/cbo9781139021500.004.
  • ChemInform Abstract: Towards the Semi‐Synthesis of Didemnin M. Solution and Solid Phase Syntheses of the Pseudotetrapeptide: pGlu‐GlnΨ[COO]Ala‐Pro‐OH.WEN J, CREWS C. ChemInform Abstract: Towards the Semi‐Synthesis of Didemnin M. Solution and Solid Phase Syntheses of the Pseudotetrapeptide: pGlu‐GlnΨ[COO]Ala‐Pro‐OH. ChemInform 2010, 29: no-no. DOI: 10.1002/chin.199819211.
  • ChemInform Abstract: Synthesis of 9‐Fluorenylmethoxycarbonyl‐Protected Amino Aldehydes.WEN J, CREWS C. ChemInform Abstract: Synthesis of 9‐Fluorenylmethoxycarbonyl‐Protected Amino Aldehydes. ChemInform 2010, 29: no-no. DOI: 10.1002/chin.199842194.
  • ChemInform Abstract: Total Synthesis of the Potent Proteasome Inhibitor Epoxomicin: A Useful Tool for Understanding Proteasome Biology.Sin N, Kim K, Elofsson M, Meng L, Auth H, Kwok B, Crews C. ChemInform Abstract: Total Synthesis of the Potent Proteasome Inhibitor Epoxomicin: A Useful Tool for Understanding Proteasome Biology. ChemInform 2010, 30: no-no. DOI: 10.1002/chin.199946187.
  • ChemInform Abstract: Efficient Stereoselective Syntheses of Isopanepoxydone and Panepoxydone: A Reassignment of Relative Configuration.Shotwell J, Hu S, Medina E, Abe M, Cole R, Crews C, Wood J. ChemInform Abstract: Efficient Stereoselective Syntheses of Isopanepoxydone and Panepoxydone: A Reassignment of Relative Configuration. ChemInform 2010, 32: no-no. DOI: 10.1002/chin.200110251.
  • ChemInform Abstract: The Ubiquitin‐Proteasome Pathway and Proteasome InhibitorsMyung J, Kim K, Crews C. ChemInform Abstract: The Ubiquitin‐Proteasome Pathway and Proteasome Inhibitors ChemInform 2010, 32: no-no. DOI: 10.1002/chin.200136283.
  • Chapter 3Schneekloth A, Crews C. Chapter 3 2010, 64-96. DOI: 10.1039/9781849732178-00064.
  • Something Old, Something NewCrews C, Famulok M, Shokat K, Wohlleben W, Kostic M. Something Old, Something New Cell Chemical Biology 2009, 16: 909. DOI: 10.1016/j.chembiol.2009.09.007.
  • 39 INVITED Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancerSakamoto K, Rodriguez-Gonzalez A, Cyrus K, Kim K, Crews C, Deshaies R. 39 INVITED Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer European Journal Of Cancer Supplements 2008, 6: 16. DOI: 10.1016/s1359-6349(08)71971-2.
  • ChemInform Abstract: Chemical Genetics: Exploring the Role of the Proteasome in Cell Biology Using Natural Products and Other Small Molecule Proteasome InhibitorsKim K, Crews C. ChemInform Abstract: Chemical Genetics: Exploring the Role of the Proteasome in Cell Biology Using Natural Products and Other Small Molecule Proteasome Inhibitors ChemInform 2008, 39: no-no. DOI: 10.1002/chin.200829270.
  • Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic Acetates.Schneekloth J, Pucheault M, Crews C. Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic Acetates. ChemInform 2007, 38: no-no. DOI: 10.1002/chin.200716047.
  • Life on the edge: Therapeutic uses of cytotoxic natural productsCrews C, Leuenroth S, Okuhara D, Shotwell J, Markowitz G, Yu Z, Somlo S. Life on the edge: Therapeutic uses of cytotoxic natural products The FASEB Journal 2007, 21: a38-a38. DOI: 10.1096/fasebj.21.5.a38-b.
  • Using Natural Products to Unravel Cell BiologyGough J, Crews C. Using Natural Products to Unravel Cell Biology 2007, 1–3: 95-114. DOI: 10.1002/9783527619375.ch2b.
  • Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic AcetatesSchneekloth J, Pucheault M, Crews C. Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic Acetates European Journal Of Organic Chemistry 2007, 2007: 40-43. DOI: 10.1002/ejoc.200600721.
  • Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1Mandal A, Schneekloth J, Crews C. Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1 Organic Letters 2005, 7: 5347-5348. DOI: 10.1021/ol052513m.
  • Total Synthesis of TMC‐95A and ‐B via a New Reaction Leading to Z‐Enamides. Some Preliminary Findings as to SAR.Lin S, Yang Z, Kwok B, Koldobskiy M, Crews C, Danishefsky S. Total Synthesis of TMC‐95A and ‐B via a New Reaction Leading to Z‐Enamides. Some Preliminary Findings as to SAR. ChemInform 2004, 35: no-no. DOI: 10.1002/chin.200439192.
  • Natural Product and Synthetic Proteasome InhibitorsKim K, Crews C. Natural Product and Synthetic Proteasome Inhibitors 2004, 47-63. DOI: 10.1007/978-1-59259-794-9_4.
  • Inhibitors of NF‐ϰB Signaling: Design and Synthesis of a Biotinylated Isopanepoxydone Affinity Reagent.Shotwell J, Koh B, Choi H, Wood J, Crews C. Inhibitors of NF‐ϰB Signaling: Design and Synthesis of a Biotinylated Isopanepoxydone Affinity Reagent. ChemInform 2003, 34: no-no. DOI: 10.1002/chin.200312206.
  • Total Synthesis of Luminacin D.Shotwell J, Krygowski E, Hines J, Koh B, Huntsman E, Choi H, Schneekloth J, Wood J, Crews C. Total Synthesis of Luminacin D. ChemInform 2003, 34: no-no. DOI: 10.1002/chin.200303211.
  • Protechials: A novel approach to pharmacological inhibition of protein functionSakamoto K, Deshaies R, Crews C. Protechials: A novel approach to pharmacological inhibition of protein function Nature Genetics 2001, 27: 83-83. DOI: 10.1038/87274.
  • Efficient stereoselective syntheses of isopanepoxydone and panepoxydone: a re-assignment of relative configurationShotwell J, Hu S, Medina E, Abe M, Cole R, Crews C, Wood* J. Efficient stereoselective syntheses of isopanepoxydone and panepoxydone: a re-assignment of relative configuration Tetrahedron Letters 2000, 41: 9639-9643. DOI: 10.1016/s0040-4039(00)01736-6.
  • Cutting complexity down to size: Structural and mutational studies of the eukaryotic 20S proteasomeGroll M, Huber R, Glickman M, Crews C, Bourenkow G, Bartunik H, Finley D. Cutting complexity down to size: Structural and mutational studies of the eukaryotic 20S proteasome Acta Crystallographica Section A: Foundations And Advances 2000, 56: s87-s87. DOI: 10.1107/s0108767300022480.
  • Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of α‘,β‘-Epoxyketone Proteasome InhibitorsGroll M, Kim K, Kairies N, Huber R, Crews C. Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of α‘,β‘-Epoxyketone Proteasome Inhibitors Journal Of The American Chemical Society 2000, 122: 1237-1238. DOI: 10.1021/ja993588m.
  • Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydesWen J, Crews C. Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydes Tetrahedron Asymmetry 1998, 9: 1855-1858. DOI: 10.1016/s0957-4166(98)00183-9.
  • Towards the semi-synthesis of didemnin M. Solution and solid phase synthese of the pseudotetrapeptide: pGlu-Glnψ[COO]Ala-Pro-OHWen J, Crews C. Towards the semi-synthesis of didemnin M. Solution and solid phase synthese of the pseudotetrapeptide: pGlu-Glnψ[COO]Ala-Pro-OH Tetrahedron Letters 1998, 39: 779-782. DOI: 10.1016/s0040-4039(97)10609-8.
  • Molineaux, C, and CM Crews. (2008) Proteasome Inhibitors in Cancer Chemotherapy, Cancer: Principles and Practice of Oncology, 8th Ed. V.T DeVita, T.S. Lawrence, S.A. Rosenberg, editors. Chapter 25., pp.486-490.Molineaux, C, and CM Crews. (2008) Proteasome Inhibitors in Cancer Chemotherapy, Cancer: Principles and Practice of Oncology, 8th Ed. V.T DeVita, T.S. Lawrence, S.A. Rosenberg, editors. Chapter 25., pp.486-490.