Craig Crews, PhD
Research & Publications
Biography
News
Research Summary
We use a combination of biochemistry, molecular biology, and bio-organic chemistry to explore different aspects of cell biology. Different projects include the development of novel small molecules to control intracellular processes such as protein homeostasis and signal transduction.
Extensive Research Description
We develop novel reagents and methodologies, which will allow us to explore new areas in cell biology. This 'chemical genetic' approach uses biologically active small molecules to control various intracellular processes. For example we developed the PROTAC technology that decrease target protein levels within cells by inducing their proteolysis via the 26S proteasome. A goal of this research is to develop novel methodologies that would allow for small molecule control of the 'undruggable proteome'.
Coauthors
Research Interests
Biochemistry; Biology; Chemistry; Cell Biology; Neoplasms; Pharmacology; Drugs, Investigational; Proteasome Endopeptidase Complex; Proteasome Inhibitors
Research Image
PROTACs: Induced Protein Degradation as a New Pharmaceutical Paradigm
Selected Publications
- The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case StudyBurslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology 2017, 25: 67-77.e3. PMID: 29129716, PMCID: PMC5831399, DOI: 10.1016/j.chembiol.2017.09.009.
- Induced protein degradation: an emerging drug discovery paradigmLai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery 2016, 16: 101-114. PMID: 27885283, PMCID: PMC5684876, DOI: 10.1038/nrd.2016.211.
- Modular PROTAC Design for the Degradation of Oncogenic BCR‐ABLLai AC, Toure M, Hellerschmied D, Salami J, Jaime‐Figueroa S, Ko E, Hines J, Crews CM. Modular PROTAC Design for the Degradation of Oncogenic BCR‐ABL. Angewandte Chemie International Edition 2015, 55: 807-810. PMID: 26593377, PMCID: PMC4733637, DOI: 10.1002/anie.201507634.
- Catalytic in vivo protein knockdown by small-molecule PROTACsBondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, Mulholland KE, Routly N, Buckley DL, Gustafson JL, Zinn N, Grandi P, Shimamura S, Bergamini G, Faelth-Savitski M, Bantscheff M, Cox C, Gordon DA, Willard RR, Flanagan JJ, Casillas LN, Votta BJ, den Besten W, Famm K, Kruidenier L, Carter PS, Harling JD, Churcher I, Crews CM. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nature Chemical Biology 2015, 11: 611-617. PMID: 26075522, PMCID: PMC4629852, DOI: 10.1038/nchembio.1858.
- Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted DegradationSchneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM. Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation. Journal Of The American Chemical Society 2004, 126: 3748-3754. PMID: 15038727, DOI: 10.1021/ja039025z.
- Abstract ND03: Discovery of ARV-766, an androgen receptor degrading PROTAC® for the treatment of men with metastatic castration resistant prostate cancerSnyder L, Lee S, Neklesa T, Chen X, Dong H, Ferraro C, Gordon D, Macaluso J, Pizzano J, Wang J, Willard R, Vitale N, Peck R, Moore M, Crews C, Houston J, Crew A, Taylor I. Abstract ND03: Discovery of ARV-766, an androgen receptor degrading PROTAC® for the treatment of men with metastatic castration resistant prostate cancer. Cancer Research 2023, 83: nd03-nd03. DOI: 10.1158/1538-7445.am2023-nd03.
- An oral androgen receptor RIPTAC for prostate cancer.Raina K, Eastman K, Yu X, Forbes C, Jones K, Mousseau J, Li H, Kayser-Bricker K, Crews C. An oral androgen receptor RIPTAC for prostate cancer. Journal Of Clinical Oncology 2023, 41: 184-184. DOI: 10.1200/jco.2023.41.6_suppl.184.
- Protein degraders enter the clinic — a new approach to cancer therapyChirnomas D, Hornberger K, Crews C. Protein degraders enter the clinic — a new approach to cancer therapy. Nature Reviews Clinical Oncology 2023, 20: 265-278. PMID: 36781982, DOI: 10.1038/s41571-023-00736-3.
- Targeted Dephosphorylation of Tau by Phosphorylation Targeting Chimeras (PhosTACs) as a Therapeutic ModalityHu Z, Chen P, Li W, Douglas T, Hines J, Liu Y, Crews C. Targeted Dephosphorylation of Tau by Phosphorylation Targeting Chimeras (PhosTACs) as a Therapeutic Modality. Journal Of The American Chemical Society 2023, 145: 4045-4055. PMID: 36753634, DOI: 10.1021/jacs.2c11706.
- Life mimics artVenkatachalapathy M, Crews C. Life mimics art. Cell Research 2023, 33: 267-268. PMID: 36646761, PMCID: PMC10066185, DOI: 10.1038/s41422-022-00765-0.
- OligoTRAFTACs: A generalizable method for transcription factor degradationSamarasinghe KTG, An E, Genuth MA, Chu L, Holley SA, Crews CM. OligoTRAFTACs: A generalizable method for transcription factor degradation. RSC Chemical Biology 2022, 3: 1144-1153. PMID: 36128504, PMCID: PMC9428672, DOI: 10.1039/d2cb00138a.
- Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTACSwartzel JC, Bond MJ, Pintado-Urbanc AP, Daftary M, Krone MW, Douglas T, Carder EJ, Zimmer JT, Maeda T, Simon MD, Crews CM. Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTAC. ACS Chemical Biology 2022, 17: 1789-1798. PMID: 35749470, PMCID: PMC10367122, DOI: 10.1021/acschembio.2c00145.
- PROTACs: past, present and futureLi K, Crews CM. PROTACs: past, present and future. Chemical Society Reviews 2022, 51: 5214-5236. PMID: 35671157, PMCID: PMC10237031, DOI: 10.1039/d2cs00193d.
- Hijacking Methyl Reader Proteins for Nuclear-Specific Protein DegradationNalawansha DA, Li K, Hines J, Crews CM. Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation. Journal Of The American Chemical Society 2022, 144: 5594-5605. PMID: 35311258, PMCID: PMC10331457, DOI: 10.1021/jacs.2c00874.
- PROTAC targeted protein degraders: the past is prologueBékés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery 2022, 21: 181-200. PMID: 35042991, PMCID: PMC8765495, DOI: 10.1038/s41573-021-00371-6.
- Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs)Chen PH, Hu Z, An E, Okeke I, Zheng S, Luo X, Gong A, Jaime-Figueroa S, Crews CM. Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chemical Biology 2021, 16: 2808-2815. PMID: 34780684, PMCID: PMC10437008, DOI: 10.1021/acschembio.1c00693.
- Recent Developments in PROTAC‐Mediated Protein Degradation: From Bench to ClinicHu Z, Crews CM. Recent Developments in PROTAC‐Mediated Protein Degradation: From Bench to Clinic. ChemBioChem 2021, 23: e202100270. PMID: 34494353, PMCID: PMC9395155, DOI: 10.1002/cbic.202100270.
- Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancerSnyder L, Neklesa T, Chen X, Dong H, Ferraro C, Gordon D, Macaluso J, Pizzano J, Wang J, Willard R, Vitale N, Peck R, Moore M, Crews C, Houston J, Crew A, Taylor I. Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer. Cancer Research 2021, 81: 43-43. DOI: 10.1158/1538-7445.am2021-43.
- Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancerSnyder L, Flanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Cadelina G, Bradley J, Rousseau E, Chandler J, Willard R, Pizzano J, Crews C, Crew A, Houston J, Moore M, Peck R, Taylor I. Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. Cancer Research 2021, 81: 44-44. DOI: 10.1158/1538-7445.am2021-44.
- Electrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 LigasesZheng S, Crews CM. Electrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 Ligases. Biochemistry 2021, 60: 2367-2370. PMID: 34152723, DOI: 10.1021/acs.biochem.1c00301.
- Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradationBond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology 2021, 2: 725-742. PMID: 34212149, PMCID: PMC8190915, DOI: 10.1039/d1cb00011j.
- Synthesis of Isoquinolones by Sequential Suzuki Coupling of 2‑Halobenzonitriles with Vinyl Boronate Followed by CyclizationJaime-Figueroa S, Bond MJ, Vergara JI, Swartzel JC, Crews CM. Synthesis of Isoquinolones by Sequential Suzuki Coupling of 2‑Halobenzonitriles with Vinyl Boronate Followed by Cyclization. The Journal Of Organic Chemistry 2021, 86: 8479-8488. PMID: 34047555, DOI: 10.1021/acs.joc.1c00472.
- Targeted protein degradation: A promise for undruggable proteinsSamarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology 2021, 28: 934-951. PMID: 34004187, PMCID: PMC8286327, DOI: 10.1016/j.chembiol.2021.04.011.
- Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting ChimerasSamarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, Hu Z, Bebenek A, Holley SA, Crews CM. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chemical Biology 2021, 28: 648-661.e5. PMID: 33836141, PMCID: PMC8524358, DOI: 10.1016/j.chembiol.2021.03.011.
- BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphomaFiskus W, Mill CP, Perera D, Birdwell C, Deng Q, Yang H, Lara BH, Jain N, Burger J, Ferrajoli A, Davis JA, Saenz DT, Jin W, Coarfa C, Crews CM, Green MR, Khoury JD, Bhalla KN. BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma. Leukemia 2021, 35: 2621-2634. PMID: 33654205, PMCID: PMC8410602, DOI: 10.1038/s41375-021-01181-w.
- Mutant-selective degradation by BRAF-targeting PROTACsAlabi S, Jaime-Figueroa S, Yao Z, Gao Y, Hines J, Samarasinghe KTG, Vogt L, Rosen N, Crews CM. Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications 2021, 12: 920. PMID: 33568647, PMCID: PMC7876048, DOI: 10.1038/s41467-021-21159-7.
- Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACsAlabi SB, Crews C. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal Of Biological Chemistry 2021, 296: 100647. PMID: 33839157, PMCID: PMC8131913, DOI: 10.1016/j.jbc.2021.100647.
- Targeted Degradation of Oncogenic KRASG12C by VHL-Recruiting PROTACsBond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted Degradation of Oncogenic KRASG12C by VHL-Recruiting PROTACs. ACS Central Science 2020, 6: 1367-1375. PMID: 32875077, PMCID: PMC7453568, DOI: 10.1021/acscentsci.0c00411.
- Generation of Chimeric Axolotls with Mutant Haploid Limbs Through Embryonic GraftingSanor L, Flowers G, Crews C. Generation of Chimeric Axolotls with Mutant Haploid Limbs Through Embryonic Grafting. Journal Of Visualized Experiments 2020 DOI: 10.3791/60156-v.
- Chapter 1 PROTAC-mediated Target Degradation: A Paradigm Changer in Drug Discovery?Cromm P, Crews C, Weinmann H. Chapter 1 PROTAC-mediated Target Degradation: A Paradigm Changer in Drug Discovery? 2020, 1-13. DOI: 10.1039/9781839160691-00001.
- O5‐04‐05: A NEW THERAPEUTIC STRATEGY FOR TAUOPATHIES: DISCOVERY OF HIGHLY POTENT BRAIN PENETRANT PROTACTM DEGRADER MOLECULES THAT TARGET PATHOLOGIC TAU PROTEIN SPECIESCacace A, Chandler J, Flanagan J, Berlin M, Cadelina G, Pizzano J, Bookbinder M, Crews C, Crew A, Taylor I, Houston J. O5‐04‐05: A NEW THERAPEUTIC STRATEGY FOR TAUOPATHIES: DISCOVERY OF HIGHLY POTENT BRAIN PENETRANT PROTACTM DEGRADER MOLECULES THAT TARGET PATHOLOGIC TAU PROTEIN SPECIES. Alzheimer's & Dementia 2019, 15: p1624-p1624. DOI: 10.1016/j.jalz.2019.06.4856.
- ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Snyder L, Willard R, Vitale N, Pizzano J, Gordon D, Bookbinder M, Macaluso J, Dong H, Ferraro C, Wang G, Wang J, Crews C, Houston J, Crew A, Taylor I. ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2019, 37: 259-259. DOI: 10.1200/jco.2019.37.7_suppl.259.
- Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancerFlanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Cadelina G, Bradley J, Rousseau E, Willard R, Pizzano J, Crews C, Crew A, Taylor I, Houston J. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Research 2019, 79: p5-04-18-p5-04-18. DOI: 10.1158/1538-7445.sabcs18-p5-04-18.
- Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure–Degradation RelationshipsBurslem GM, Ottis P, Jaime‐Figueroa S, Morgan A, Cromm PM, Toure M, Crews C. Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure–Degradation Relationships. ChemMedChem 2018, 13: 1508-1512. PMID: 29870139, PMCID: PMC6291207, DOI: 10.1002/cmdc.201800271.
- Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancerNeklesa T, Snyder L, Willard R, Vitale N, Raina K, Pizzano J, Gordon D, Bookbinder M, Macaluso J, Dong H, Liu Z, Ferraro C, Wang G, Wang J, Crews C, Houston J, Crew A, Taylor I. Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancer. Cancer Research 2018, 78: 5236-5236. DOI: 10.1158/1538-7445.am2018-5236.
- An oral androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Snyder L, Willard R, Vitale N, Raina K, Pizzano J, Gordon D, Bookbinder M, Macaluso J, Dong H, Liu Z, Ferraro C, Wang G, Wang J, Crews C, Houston J, Crew A, Taylor I. An oral androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2018, 36: 381-381. DOI: 10.1200/jco.2018.36.6_suppl.381.
- Abstract P4-04-04: Identification and development of oral estrogen receptor PROTAC degraders for breast cancerFlanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Bradley J, Rousseau E, Willard R, Crews C, Crew A, Taylor I, Houston J. Abstract P4-04-04: Identification and development of oral estrogen receptor PROTAC degraders for breast cancer. Cancer Research 2018, 78: p4-04-04-p4-04-04. DOI: 10.1158/1538-7445.sabcs17-p4-04-04.
- BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALLPiya S, Mu H, Bhattacharya S, McQueen T, Davis R, Ruvolo V, Baran N, Qian Y, Raina K, Crews C, You M, McKay P, Konopleva M, Kantarjian H, Andreeff M, Borthakur G. BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALL. Blood 2017, 130: 716-716. DOI: 10.1182/blood.v130.suppl_1.716.716.
- Abstract 5067: BET protein proteolysis targeting chimera (BETP-PROTACs) exert more potent activity than BETP bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cellsSaenz D, Fiskus W, Raina K, Manshouri T, Coleman K, Qian Y, Crew A, Shen A, Mill C, Sun B, Kim M, Nowak A, Verstovsek S, Crews C, Bhalla K. Abstract 5067: BET protein proteolysis targeting chimera (BETP-PROTACs) exert more potent activity than BETP bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cells. Cancer Research 2017, 77: 5067-5067. DOI: 10.1158/1538-7445.am2017-5067.
- Abstract 5637: An oral Androgen Receptor PROTAC degrader for prostate cancerNeklesa T, Snyder L, Bookbinder M, Chen X, Crew A, Crews C, Dong H, Gordon D, Macaluso J, Raina K, Rossi A, Taylor I, Vitale N, Wang J, Willard R, Zimmermann K. Abstract 5637: An oral Androgen Receptor PROTAC degrader for prostate cancer. Cancer Research 2017, 77: 5637-5637. DOI: 10.1158/1538-7445.am2017-5637.
- BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cellsSun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Saenz DT, Mill CP, Nowak AJ, Jain N, Zhang L, Wang M, Khoury JD, Coarfa C, Crews CM, Bhalla KN. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 2017, 32: 343-352. PMID: 28663582, DOI: 10.1038/leu.2017.207.
- Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target ProteinsColeman K, Crews C. Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review Of Cancer Biology 2017, 2: 1-18. DOI: 10.1146/annurev-cancerbio-030617-050430.
- An oral androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Snyder L, Bookbinder M, Chen X, Crew A, Crews C, Dong H, Gordon D, Raina K, Rossi A, Taylor I, Vitale N, Wang J, Willard R, Zimmermann K. An oral androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2017, 35: 273-273. DOI: 10.1200/jco.2017.35.6_suppl.273.
- Abstract S4-03: Targeted and selective degradation of estrogen receptor (ER) alpha by PROTACsFlanagan J, Rossi A, Anderoli M, Willard R, Gordon D, Harling J, Churcher I, Smith I, Zinn N, Bantscheff M, Crews C, Crew A, Coleman K, Winkler J, Qian Y. Abstract S4-03: Targeted and selective degradation of estrogen receptor (ER) alpha by PROTACs. Cancer Research 2017, 77: s4-03-s4-03. DOI: 10.1158/1538-7445.sabcs16-s4-03.
- Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cellsSaenz DT, Fiskus W, Qian Y, Manshouri T, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Mill CP, Sun B, Qiu P, Kadia TM, Pemmaraju N, DiNardo C, Kim MS, Nowak AJ, Coarfa C, Crews CM, Verstovsek S, Bhalla KN. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 2017, 31: 1951-1961. PMID: 28042144, PMCID: PMC5537055, DOI: 10.1038/leu.2016.393.
- ChemInform Abstract: Expeditious Synthesis of Isoquinolones and Isocoumarins with a Vinyl Borane as an Acetylene Equivalent.Toure M, Jaime‐Figueroa S, Burslem G, Crews C. ChemInform Abstract: Expeditious Synthesis of Isoquinolones and Isocoumarins with a Vinyl Borane as an Acetylene Equivalent. ChemInform 2016, 47: no-no. DOI: 10.1002/chin.201652057.
- Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML CellsSaenz D, Fiskus W, Raina K, Manshouri T, Coleman K, Winkler J, Qian Y, Crew A, Shen A, Mill C, Sun B, Verstovsek S, Crews C, Bhalla K. Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML Cells. Blood 2016, 128: 747-747. DOI: 10.1182/blood.v128.22.747.747.
- BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825, Causes Sustained Degradation of BRD4 and Modulation of Chemokine Receptors, Cell Adhesion and Metabolic Targets in Leukemia Resulting in Profound Anti-Leukemic EffectsPiya S, Bhattacharya S, Mu H, Lorenzi P, McQueen T, Davis E, Ruvolo V, Baran N, Qian Y, Crews C, Kantarjian H, Andreeff M, Borthakur G. BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825, Causes Sustained Degradation of BRD4 and Modulation of Chemokine Receptors, Cell Adhesion and Metabolic Targets in Leukemia Resulting in Profound Anti-Leukemic Effects. Blood 2016, 128: 748-748. DOI: 10.1182/blood.v128.22.748.748.
- Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma CellsSun B, Fiskus W, Zhang L, Raina K, Coleman K, Winkler J, Qian Y, Crew A, Shen A, Saenz D, Mill C, Wang M, Crews C, Bhalla K. Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma Cells. Blood 2016, 128: 1058-1058. DOI: 10.1182/blood.v128.22.1058.1058.
- 15 PROTAC BET degraders are more broadly effective than BET inhibitorsWinkler J, Raina K, Altieri M, Dong H, Wang J, Chen X, Crew A, Crews C, Qian Y, Kleinfield R, Coleman K. 15 PROTAC BET degraders are more broadly effective than BET inhibitors. European Journal Of Cancer 2016, 69: s10. DOI: 10.1016/s0959-8049(16)32621-1.
- Abstract 4710: BRD4 degradation by PROTACs represents a more effective therapeutic strategy than BRD4 inhibitors in ovarian cancerRaina K, Lu J, Qian Y, Altieri M, Dong H, Wang J, Chen X, Crew A, Coleman K, Crews C, Winkler J. Abstract 4710: BRD4 degradation by PROTACs represents a more effective therapeutic strategy than BRD4 inhibitors in ovarian cancer. Cancer Research 2016, 76: 4710-4710. DOI: 10.1158/1538-7445.am2016-4710.
- ChemInform Abstract: Small‐Molecule PROTACS: New Approaches to Protein DegradationToure M, Crews C. ChemInform Abstract: Small‐Molecule PROTACS: New Approaches to Protein Degradation. ChemInform 2016, 47: no-no. DOI: 10.1002/chin.201613266.
- Small‐Molecule PROTACS: New Approaches to Protein DegradationToure M, Crews CM. Small‐Molecule PROTACS: New Approaches to Protein Degradation. Angewandte Chemie International Edition 2016, 55: 1966-1973. PMID: 26756721, DOI: 10.1002/anie.201507978.
- ARV-330: Androgen receptor PROTAC degrader for prostate cancer.Neklesa T, Jin M, Crew A, Rossi A, Willard R, Dong H, Siu K, Wang J, Gordon D, Chen X, Ferraro C, Crews C, Coleman K, Winkler J. ARV-330: Androgen receptor PROTAC degrader for prostate cancer. Journal Of Clinical Oncology 2016, 34: 267-267. DOI: 10.1200/jco.2016.34.2_suppl.267.
- BRD4 Degradation By Protacs Represents a More Effective Therapeutic Strategy Than BRD4 Inhibitors in DLBCLLu J, Qian Y, Raina K, Altieri M, Dong H, Wang J, Chen X, Crew A, Coleman K, Crews C, Winkler J. BRD4 Degradation By Protacs Represents a More Effective Therapeutic Strategy Than BRD4 Inhibitors in DLBCL. Blood 2015, 126: 2050-2050. DOI: 10.1182/blood.v126.23.2050.2050.
- Abstract PR08: ARV-330: An androgen receptor PROTAC degrader for prostate cancerWinkler J, Jin M, Crew A, Rossi A, Willard R, Dong H, Siu K, Wang J, Gordon D, Chen X, Ferraro C, Crews C, Coleman K, Neklesa T. Abstract PR08: ARV-330: An androgen receptor PROTAC degrader for prostate cancer. Molecular Cancer Therapeutics 2015, 14: pr08-pr08. DOI: 10.1158/1535-7163.targ-15-pr08.
- Modulares PROTAC‐Design zum Abbau von onkogenem BCR‐ABLLai A, Toure M, Hellerschmied D, Salami J, Jaime‐Figueroa S, Ko E, Hines J, Crews C. Modulares PROTAC‐Design zum Abbau von onkogenem BCR‐ABL. Angewandte Chemie 2015, 128: 818-821. DOI: 10.1002/ange.201507634.
- Abstract LB-010: Hijacking the E3 ubiquitin ligase cereblon to create efficient BRD4 degradersLu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Winkler J, Crew A, Coleman K, Hines J, Crews C. Abstract LB-010: Hijacking the E3 ubiquitin ligase cereblon to create efficient BRD4 degraders. 2015, lb-010-lb-010. DOI: 10.1158/1538-7445.am2015-lb-010.
- Abstract LB-097: Targeted degradation of the androgen receptor in prostate cancerJin M, Winkler J, Coleman K, Crew A, Rossi A, Willard R, Dong H, Siu K, Wang J, Gordon D, Chen X, Ferraro C, Crews C, Neklesa T. Abstract LB-097: Targeted degradation of the androgen receptor in prostate cancer. 2015, lb-097-lb-097. DOI: 10.1158/1538-7445.am2015-lb-097.
- HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion ProteinsBuckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chemical Biology 2015, 10: 1831-1837. PMID: 26070106, PMCID: PMC4629848, DOI: 10.1021/acschembio.5b00442.
- Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic TaggingGustafson JL, Neklesa TK, Cox CS, Roth AG, Buckley DL, Tae HS, Sundberg TB, Stagg DB, Hines J, McDonnell DP, Norris JD, Crews CM. Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie International Edition 2015, 54: 9659-9662. PMID: 26083457, PMCID: PMC4547777, DOI: 10.1002/anie.201503720.
- Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic TaggingGustafson J, Neklesa T, Cox C, Roth A, Buckley D, Tae H, Sundberg T, Stagg D, Hines J, McDonnell D, Norris J, Crews C. Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie 2015, 127: 9795-9798. DOI: 10.1002/ange.201503720.
- Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM. Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. Cell Chemical Biology 2015, 22: 755-763. PMID: 26051217, PMCID: PMC4475452, DOI: 10.1016/j.chembiol.2015.05.009.
- BRD4 degraders produce long-lasting loss of BRD4 Ppotein and robust efficacy in Burkitt’s lymphoma cells.Coleman K, Lu J, Qian Y, Altieri M, Raina K, Dong H, Wang J, Hines J, Crew A, Crews C. BRD4 degraders produce long-lasting loss of BRD4 Ppotein and robust efficacy in Burkitt’s lymphoma cells. Journal Of Clinical Oncology 2015, 33: 8557-8557. DOI: 10.1200/jco.2015.33.15_suppl.8557.
- Characterization of a Small‐molecule Modulator of IRE1α ActivitySalami‐Oyenuga J, Raina K, Crews C. Characterization of a Small‐molecule Modulator of IRE1α Activity. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.723.2.
- Small molecule‐induced catalytic ubiquitination of non‐natural substratesBondeson D, Pancevac C, Kruidenier L, Carter P, Churcher I, Crews C. Small molecule‐induced catalytic ubiquitination of non‐natural substrates. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.573.43.
- Specific Induction of Golgi Stress by Targeted Protein DestabilizationSerebrenik Y, Crews C. Specific Induction of Golgi Stress by Targeted Protein Destabilization. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.723.5.
- Targeted protein destabilization reveals an estrogen-mediated ER stress responseRaina K, Noblin DJ, Serebrenik YV, Adams A, Zhao C, Crews CM. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nature Chemical Biology 2014, 10: 957-962. PMID: 25242550, PMCID: PMC4324732, DOI: 10.1038/nchembio.1638.
- Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nucleaseFlowers GP, Timberlake AT, Mclean KC, Monaghan JR, Crews CM. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 2014, 141: 2165-2171. PMID: 24764077, PMCID: PMC4011087, DOI: 10.1242/dev.105072.
- Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome SystemBuckley DL, Crews CM. Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System. Angewandte Chemie International Edition 2014, 53: 2312-2330. PMID: 24459094, PMCID: PMC4348030, DOI: 10.1002/anie.201307761.
- A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion ProteinsNeklesa TK, Noblin DJ, Kuzin A, Lew S, Seetharaman J, Acton TB, Kornhaber G, Xiao R, Montelione G, Tong L, Crews CM. A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins. ACS Chemical Biology 2013, 8: 2293-2300. PMID: 23978068, PMCID: PMC4113957, DOI: 10.1021/cb400569k.
- Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACsHines J, Gough JD, Corson TW, Crews CM. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 8942-8947. PMID: 23674677, PMCID: PMC3670320, DOI: 10.1073/pnas.1217206110.
- From epoxomicin to carfilzomib : chemistry, biology, and medical outcomesKim KB, Crews CM. From epoxomicin to carfilzomib : chemistry, biology, and medical outcomes. Natural Product Reports 2013, 30: 600-604. PMID: 23575525, PMCID: PMC3815659, DOI: 10.1039/c3np20126k.
- Greasy tags for protein removalNeklesa TK, Crews CM. Greasy tags for protein removal. Nature 2012, 487: 308-309. PMID: 22810693, DOI: 10.1038/487308a.
- Exploring Biology with Small Organic MoleculesAberle N, Crews C. Exploring Biology with Small Organic Molecules. 2012, 10-25. DOI: 10.1017/cbo9781139021500.004.
- Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteinsNeklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW, Sundberg TB, Raina K, Holley SA, Crews CM. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nature Chemical Biology 2011, 7: 538-543. PMID: 21725302, PMCID: PMC3139752, DOI: 10.1038/nchembio.597.
- Chapter 3Schneekloth A, Crews C. Chapter 3. 2010, 64-96. DOI: 10.1039/9781849732178-00064.
- ChemInform Abstract: Towards the Semi‐Synthesis of Didemnin M. Solution and Solid Phase Syntheses of the Pseudotetrapeptide: pGlu‐GlnΨ[COO]Ala‐Pro‐OH.WEN J, CREWS C. ChemInform Abstract: Towards the Semi‐Synthesis of Didemnin M. Solution and Solid Phase Syntheses of the Pseudotetrapeptide: pGlu‐GlnΨ[COO]Ala‐Pro‐OH. ChemInform 2010, 29: no-no. DOI: 10.1002/chin.199819211.
- ChemInform Abstract: Synthesis of 9‐Fluorenylmethoxycarbonyl‐Protected Amino Aldehydes.WEN J, CREWS C. ChemInform Abstract: Synthesis of 9‐Fluorenylmethoxycarbonyl‐Protected Amino Aldehydes. ChemInform 2010, 29: no-no. DOI: 10.1002/chin.199842194.
- ChemInform Abstract: Total Synthesis of the Potent Proteasome Inhibitor Epoxomicin: A Useful Tool for Understanding Proteasome Biology.Sin N, Kim K, Elofsson M, Meng L, Auth H, Kwok B, Crews C. ChemInform Abstract: Total Synthesis of the Potent Proteasome Inhibitor Epoxomicin: A Useful Tool for Understanding Proteasome Biology. ChemInform 2010, 30: no-no. DOI: 10.1002/chin.199946187.
- Targeting the Undruggable Proteome: The Small Molecules of My DreamsCrews CM. Targeting the Undruggable Proteome: The Small Molecules of My Dreams. Cell Chemical Biology 2010, 17: 551-555. PMID: 20609404, PMCID: PMC2925121, DOI: 10.1016/j.chembiol.2010.05.011.
- ChemInform Abstract: Efficient Stereoselective Syntheses of Isopanepoxydone and Panepoxydone: A Reassignment of Relative Configuration.Shotwell J, Hu S, Medina E, Abe M, Cole R, Crews C, Wood J. ChemInform Abstract: Efficient Stereoselective Syntheses of Isopanepoxydone and Panepoxydone: A Reassignment of Relative Configuration. ChemInform 2010, 32: no-no. DOI: 10.1002/chin.200110251.
- ChemInform Abstract: The Ubiquitin‐Proteasome Pathway and Proteasome InhibitorsMyung J, Kim K, Crews C. ChemInform Abstract: The Ubiquitin‐Proteasome Pathway and Proteasome Inhibitors. ChemInform 2010, 32: no-no. DOI: 10.1002/chin.200136283.
- Chemical Inducers of Targeted Protein Degradation*Raina K, Crews CM. Chemical Inducers of Targeted Protein Degradation*. Journal Of Biological Chemistry 2010, 285: 11057-11060. PMID: 20147751, PMCID: PMC2856979, DOI: 10.1074/jbc.r109.078105.
- Something Old, Something NewCrews C, Famulok M, Shokat K, Wohlleben W, Kostic M. Something Old, Something New. Cell Chemical Biology 2009, 16: 909. DOI: 10.1016/j.chembiol.2009.09.007.
- 39 INVITED Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancerSakamoto K, Rodriguez-Gonzalez A, Cyrus K, Kim K, Crews C, Deshaies R. 39 INVITED Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. European Journal Of Cancer Supplements 2008, 6: 16. DOI: 10.1016/s1359-6349(08)71971-2.
- Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancerRodriguez-Gonzalez A, Cyrus K, Salcius M, Kim K, Crews CM, Deshaies RJ, Sakamoto KM. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 2008, 27: 7201-7211. PMID: 18794799, PMCID: PMC5573236, DOI: 10.1038/onc.2008.320.
- ChemInform Abstract: Chemical Genetics: Exploring the Role of the Proteasome in Cell Biology Using Natural Products and Other Small Molecule Proteasome InhibitorsKim K, Crews C. ChemInform Abstract: Chemical Genetics: Exploring the Role of the Proteasome in Cell Biology Using Natural Products and Other Small Molecule Proteasome Inhibitors. ChemInform 2008, 39: no-no. DOI: 10.1002/chin.200829270.
- Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic Acetates.Schneekloth J, Pucheault M, Crews C. Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic Acetates. ChemInform 2007, 38: no-no. DOI: 10.1002/chin.200716047.
- Life on the edge: Therapeutic uses of cytotoxic natural productsCrews C, Leuenroth S, Okuhara D, Shotwell J, Markowitz G, Yu Z, Somlo S. Life on the edge: Therapeutic uses of cytotoxic natural products. The FASEB Journal 2007, 21: a38-a38. DOI: 10.1096/fasebj.21.5.a38-b.
- Using Natural Products to Unravel Cell BiologyGough J, Crews C. Using Natural Products to Unravel Cell Biology. 2007, 95-114. DOI: 10.1002/9783527619375.ch2b.
- Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic AcetatesSchneekloth J, Pucheault M, Crews C. Construction of Highly Substituted Stereodefined Dienes by Cross‐Coupling of α‐Allenic Acetates. European Journal Of Organic Chemistry 2006, 2007: 40-43. DOI: 10.1002/ejoc.200600721.
- Probing Protein Function with Small MoleculesGough JD, Crews CM. Probing Protein Function with Small Molecules. 2006, 58: 61-74. PMID: 16708999, DOI: 10.1007/978-3-540-37635-4_5.
- Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1Mandal A, Schneekloth J, Crews C. Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1. Organic Letters 2005, 7: 5347-5348. DOI: 10.1021/ol052513m.
- Total Synthesis of TMC‐95A and ‐B via a New Reaction Leading to Z‐Enamides. Some Preliminary Findings as to SAR.Lin S, Yang Z, Kwok B, Koldobskiy M, Crews C, Danishefsky S. Total Synthesis of TMC‐95A and ‐B via a New Reaction Leading to Z‐Enamides. Some Preliminary Findings as to SAR. ChemInform 2004, 35: no-no. DOI: 10.1002/chin.200439192.
- Natural Product and Synthetic Proteasome InhibitorsKim K, Crews C. Natural Product and Synthetic Proteasome Inhibitors. 2004, 47-63. DOI: 10.1007/978-1-59259-794-9_4.
- Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteinsCrews C. Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Current Opinion In Chemical Biology 2003 DOI: 10.1016/s1367-5931(03)00104-2.
- Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitroGarrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, Harris SE, Gallwitz W, Kim KB, Hu S, Crews CM, Mundy GR. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. Journal Of Clinical Investigation 2003, 111: 1771-1782. PMID: 12782679, PMCID: PMC156102, DOI: 10.1172/jci16198.
- Inhibitors of NF‐ϰB Signaling: Design and Synthesis of a Biotinylated Isopanepoxydone Affinity Reagent.Shotwell J, Koh B, Choi H, Wood J, Crews C. Inhibitors of NF‐ϰB Signaling: Design and Synthesis of a Biotinylated Isopanepoxydone Affinity Reagent. ChemInform 2003, 34: no-no. DOI: 10.1002/chin.200312206.
- Total Synthesis of Luminacin D.Shotwell J, Krygowski E, Hines J, Koh B, Huntsman E, Choi H, Schneekloth J, Wood J, Crews C. Total Synthesis of Luminacin D. ChemInform 2003, 34: no-no. DOI: 10.1002/chin.200303211.
- Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradationSakamoto K, Kim K, Kumagai A, Mercurio F, Crews C, Deshaies R. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 8554-8559. PMID: 11438690, PMCID: PMC37474, DOI: 10.1073/pnas.141230798.
- The ubiquitin‐proteasome pathway and proteasome inhibitorsMyung J, Kim K, Crews C. The ubiquitin‐proteasome pathway and proteasome inhibitors. Medicinal Research Reviews 2001, 21: 245-273. PMID: 11410931, PMCID: PMC2556558, DOI: 10.1002/med.1009.
- Protechials: A novel approach to pharmacological inhibition of protein functionSakamoto K, Deshaies R, Crews C. Protechials: A novel approach to pharmacological inhibition of protein function. Nature Genetics 2001, 27: 83-83. DOI: 10.1038/87274.
- Lack of Proteasome Active Site Allostery as Revealed by Subunit-Specific InhibitorsMyung J, Kim K, Lindsten K, Dantuma N, Crews C. Lack of Proteasome Active Site Allostery as Revealed by Subunit-Specific Inhibitors. Molecular Cell 2001, 7: 411-420. PMID: 11239469, DOI: 10.1016/s1097-2765(01)00188-5.
- Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survivalPrinciotta M, Schubert U, Chen W, Bennink J, Myung J, Crews C, Yewdell J. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 513-518. PMID: 11149939, PMCID: PMC14618, DOI: 10.1073/pnas.98.2.513.
- The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinaseKwok B, Koh B, Ndubuisi M, Elofsson M, Crews C. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Cell Chemical Biology 2001, 8: 759-766. PMID: 11514225, DOI: 10.1016/s1074-5521(01)00049-7.
- Efficient stereoselective syntheses of isopanepoxydone and panepoxydone: a re-assignment of relative configurationShotwell J, Hu S, Medina E, Abe M, Cole R, Crews C, Wood* J. Efficient stereoselective syntheses of isopanepoxydone and panepoxydone: a re-assignment of relative configuration. Tetrahedron Letters 2000, 41: 9639-9643. DOI: 10.1016/s0040-4039(00)01736-6.
- The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrestYeh J, Mohan R, Crews C. The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12782-12787. PMID: 11070090, PMCID: PMC18841, DOI: 10.1073/pnas.97.23.12782.
- Cutting complexity down to size: Structural and mutational studies of the eukaryotic 20S proteasomeGroll M, Huber R, Glickman M, Crews C, Bourenkow G, Bartunik H, Finley D. Cutting complexity down to size: Structural and mutational studies of the eukaryotic 20S proteasome. Acta Crystallographica Section A: Foundations And Advances 2000, 56: s87-s87. DOI: 10.1107/s0108767300022480.
- The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic DosesSchwarz K, de Giuli R, Schmidtke G, Kostka S, van den Broek M, Kim K, Crews C, Kraft R, Groettrup M. The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses. The Journal Of Immunology 2000, 164: 6147-6157. PMID: 10843664, PMCID: PMC2507740, DOI: 10.4049/jimmunol.164.12.6147.
- Small-molecule inhibitors of the cell cycleCrews C, Mohan R. Small-molecule inhibitors of the cell cycle. Current Opinion In Chemical Biology 2000, 4: 47-53. PMID: 10679374, DOI: 10.1016/s1367-5931(99)00050-2.
- Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of α‘,β‘-Epoxyketone Proteasome InhibitorsGroll M, Kim K, Kairies N, Huber R, Crews C. Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of α‘,β‘-Epoxyketone Proteasome Inhibitors. Journal Of The American Chemical Society 2000, 122: 1237-1238. DOI: 10.1021/ja993588m.
- Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: Insights into specificity and potencyKim K, Myung J, Sin N, Crews C. Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: Insights into specificity and potency. Bioorganic & Medicinal Chemistry Letters 1999, 9: 3335-3340. PMID: 10612595, DOI: 10.1016/s0960-894x(99)00612-5.
- Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide α', β'-epoxyketonesElofsson M, Splittgerber U, Myung J, Mohan R, Crews C. Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide α', β'-epoxyketones. Cell Chemical Biology 1999, 6: 811-822. PMID: 10574782, DOI: 10.1016/s1074-5521(99)80128-8.
- Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activityMeng L, Mohan R, Kwok B, Elofsson M, Sin N, Crews C. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 10403-10408. PMID: 10468620, PMCID: PMC17900, DOI: 10.1073/pnas.96.18.10403.
- Chemical genetics: exploring and controlling cellular processes with chemical probesCrews C, Splittgerber U. Chemical genetics: exploring and controlling cellular processes with chemical probes. Trends In Biochemical Sciences 1999, 24: 317-320. PMID: 10431176, DOI: 10.1016/s0968-0004(99)01425-5.
- Total synthesis of the-potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biologySin N, Kim K, Elofsson M, Meng L, Auth H, Kwok B, Crews C. Total synthesis of the-potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorganic & Medicinal Chemistry Letters 1999, 9: 2283-2288. PMID: 10465562, DOI: 10.1016/s0960-894x(99)00376-5.
- Eponemycin exerts its antitumor effect through the inhibition of proteasome function.Meng L, Kwok BH, Sin N, Crews CM. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Research 1999, 59: 2798-801. PMID: 10383134.
- Structure of Human Methionine Aminopeptidase-2 Complexed with FumagillinLiu S, Widom J, Kemp C, Crews C, Clardy J. Structure of Human Methionine Aminopeptidase-2 Complexed with Fumagillin. Science 1998, 282: 1324-1327. PMID: 9812898, DOI: 10.1126/science.282.5392.1324.
- Eponemycin analogues: syntheses and use as probes of angiogenesisSin N, Meng L, Auth H, Crews C. Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorganic & Medicinal Chemistry 1998, 6: 1209-1217. PMID: 9784862, DOI: 10.1016/s0968-0896(98)00089-3.
- The Antiproliferative Agent Didemnin B Uncompetitively Inhibits Palmitoyl Protein Thioesterase †Meng L, Sin N, Crews C. The Antiproliferative Agent Didemnin B Uncompetitively Inhibits Palmitoyl Protein Thioesterase †. Biochemistry 1998, 37: 10488-10492. PMID: 9671519, DOI: 10.1021/bi9804479.
- Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydesWen J, Crews C. Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydes. Tetrahedron Asymmetry 1998, 9: 1855-1858. DOI: 10.1016/s0957-4166(98)00183-9.
- Towards the semi-synthesis of didemnin M. Solution and solid phase synthese of the pseudotetrapeptide: pGlu-Glnψ[COO]Ala-Pro-OHWen J, Crews C. Towards the semi-synthesis of didemnin M. Solution and solid phase synthese of the pseudotetrapeptide: pGlu-Glnψ[COO]Ala-Pro-OH. Tetrahedron Letters 1998, 39: 779-782. DOI: 10.1016/s0040-4039(97)10609-8.
- The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2Sin N, Meng L, Wang M, Wen J, Bornmann W, Crews C. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 6099-6103. PMID: 9177176, PMCID: PMC21008, DOI: 10.1073/pnas.94.12.6099.
- Deciphering isozyme function: exploring cell biology with chemistry in the post-genomic eraCrews C. Deciphering isozyme function: exploring cell biology with chemistry in the post-genomic era. Cell Chemical Biology 1996, 3: 961-965. PMID: 9000005, DOI: 10.1016/s1074-5521(96)90162-3.
- Mek MAPK/Erk kinase (vertebrates) (MAP kinase kinase, MAPKK)Erikson R, Alessandrini A, Crews C. Mek MAPK/Erk kinase (vertebrates) (MAP kinase kinase, MAPKK). 1995, 275-277. DOI: 10.1016/b978-012324719-3/50085-6.
- GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 alpha.Crews CM, Collins JL, Lane WS, Snapper ML, Schreiber SL. GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 alpha. Journal Of Biological Chemistry 1994, 269: 15411-15414. PMID: 8195179, DOI: 10.1016/s0021-9258(17)40692-2.
- Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation.Huang W, Alessandrini A, Crews CM, Erikson RL. Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 10947-10951. PMID: 8248196, PMCID: PMC47898, DOI: 10.1073/pnas.90.23.10947.
- MEK2 is a kinase related to MEK1 and is differentially expressed in murine tissues.Brott BK, Alessandrini A, Largaespada DA, Copeland NG, Jenkins NA, Crews CM, Erikson RL. MEK2 is a kinase related to MEK1 and is differentially expressed in murine tissues. Molecular Cancer Research 1993, 4: 921-9. PMID: 8297798.
- Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro.Macdonald SG, Crews CM, Wu L, Driller J, Clark R, Erikson RL, McCormick F. Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Molecular And Cellular Biology 1993, 13: 6615-6620. PMID: 8413257, PMCID: PMC364724, DOI: 10.1128/mcb.13.11.6615.
- Reconstitution of the Raf-1-MEK-ERK Signal Transduction Pathway In VitroMacDonald S, Crews C, Wu L, Driller J, Clark R, Erikson R, McCormick F. Reconstitution of the Raf-1-MEK-ERK Signal Transduction Pathway In Vitro. Molecular And Cellular Biology 1993, 13: 6615-6620. DOI: 10.1128/mcb.13.11.6615-6620.1993.
- Reconstitution of the Raf-1-MEK-ERK Signal Transduction Pathway In VitroMacDonald S, Crews C, Wu L, Driller J, Clark R, Erikson R, McCormick F. Reconstitution of the Raf-1-MEK-ERK Signal Transduction Pathway In Vitro. Molecular And Cellular Biology 1993, 13: 6615-6620. DOI: 10.1128/mcb.13.11.6615-6620.1993.
- Extracellular signals and reversible protein phosphorylation: What to Mek of it allCrews C, Erikson R. Extracellular signals and reversible protein phosphorylation: What to Mek of it all. Cell 1993, 74: 215-217. PMID: 8343948, DOI: 10.1016/0092-8674(93)90411-i.
- The Primary Structure of MEK, a Protein Kinase that Phosphorylates the ERK Gene ProductCrews C, Alessandrini A, Erikson R. The Primary Structure of MEK, a Protein Kinase that Phosphorylates the ERK Gene Product. Science 1992, 258: 478-480. PMID: 1411546, DOI: 10.1126/science.1411546.
- Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product.Crews CM, Erikson RL. Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 8205-8209. PMID: 1381507, PMCID: PMC49886, DOI: 10.1073/pnas.89.17.8205.
- Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product.Alessandrini A, Crews CM, Erikson RL. Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 8200-8204. PMID: 1518847, PMCID: PMC49885, DOI: 10.1073/pnas.89.17.8200.
- Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin.Calvo V, Crews CM, Vik TA, Bierer BE. Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 7571-5. PMID: 1380162, PMCID: PMC49752, DOI: 10.1073/pnas.89.16.7571.
- Erks: their fifteen minutes has arrived.Crews CM, Alessandrini A, Erikson RL. Erks: their fifteen minutes has arrived. Molecular Cancer Research 1992, 3: 135-42. PMID: 1504018.
- Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine.Crews CM, Alessandrini AA, Erikson RL. Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine. Proceedings Of The National Academy Of Sciences Of The United States Of America 1991, 88: 8845-8849. PMID: 1717989, PMCID: PMC52607, DOI: 10.1073/pnas.88.19.8845.
- Sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase.Alcorta DA, Crews CM, Sweet LJ, Bankston L, Jones SW, Erikson RL. Sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase. Molecular And Cellular Biology 1989, 9: 3850-3859. PMID: 2779569, PMCID: PMC362446, DOI: 10.1128/mcb.9.9.3850.
- Sequence and Expression of Chicken and Mouse rsk: Homologs of Xenopus laevis Ribosomal S6 KinaseAlcorta D, Crews C, Sweet L, Bankston L, Jones S, Erikson R. Sequence and Expression of Chicken and Mouse rsk: Homologs of Xenopus laevis Ribosomal S6 Kinase. Molecular And Cellular Biology 1989, 9: 3850-3859. DOI: 10.1128/mcb.9.9.3850-3859.1989.
- Sequence and Expression of Chicken and Mouse rsk: Homologs of Xenopus laevis Ribosomal S6 KinaseAlcorta D, Crews C, Sweet L, Bankston L, Jones S, Erikson R. Sequence and Expression of Chicken and Mouse rsk: Homologs of Xenopus laevis Ribosomal S6 Kinase. Molecular And Cellular Biology 1989, 9: 3850-3859. DOI: 10.1128/mcb.9.9.3850-3859.1989.
- Molineaux, C, and CM Crews. (2008) Proteasome Inhibitors in Cancer Chemotherapy, Cancer: Principles and Practice of Oncology, 8th Ed. V.T DeVita, T.S. Lawrence, S.A. Rosenberg, editors. Chapter 25., pp.486-490.Molineaux, C, and CM Crews. (2008) Proteasome Inhibitors in Cancer Chemotherapy, Cancer: Principles and Practice of Oncology, 8th Ed. V.T DeVita, T.S. Lawrence, S.A. Rosenberg, editors. Chapter 25., pp.486-490.