Shirin Bahmanyar, PhD
Associate Professor Tenure of Molecular, Cellular and Developmental BiologyCards
Additional Titles
Assistant Professor
Contact Info
About
Titles
Associate Professor Tenure of Molecular, Cellular and Developmental Biology
Assistant Professor
Biography
Dr. Bahmanyar received her undergraduate degree from UC Berkeley and her Ph.D. from Stanford University. She was a post-doctoral fellow with Dr. Karen Oegema at the Ludwig Institute for Cancer Research at UC San Diego where she recognized the advantages of the early C. elegans embryo as a tractable model system to dissect mechanisms that control nuclear envelope dynamics to ensure genome protection. Her post-doctoral work with elucidated an important new principle involving local regulation of phospholipid synthesis in specifying the nuclear envelope domain within the continuous endoplasmic reticulum (ER). Her work now is focused on elucidating mechanisms underpinning regulatory roles for lipid composition and dynamics in nuclear envelope and ER membrane remodeling and genome protection.
Departments & Organizations
Education & Training
- Post-doctoral Researcher
- Ludwig Institute for Cancer Research/UCSD (2013)
- PhD
- Stanford University (2008)
- BA
- University of California, Berkeley (2001)
Research
Overview
Our lab is interested in mechanisms that drive organelle structure, identity, and dynamics. In particular, we study the nuclear envelope - a specialized compartment that surrounds and protects the genome. The nuclear envelope is highly dynamic in both interphase and mitotic cells. Defects in nuclear envelope dynamics cause DNA damage and disrupt nuclear functions and as such are highly relevant to disease, yet little is known about mechanisms that control membrane dynamics at the NE.
Membrane dynamics at nearly all membrane bound organelles depend on the composition of bilayer lipids. Almost nothing is known about the membrane lipid composition of the nuclear envelope. This is in part because the nuclear envelope is not a stand-alone organelle but is continuous with the expansive endoplasmic reticulum (ER) making it difficult to biochemically distinguish between their lipid content. The ER serves as a platform for de novo lipid synthesis. Because lipids diffuse rapidly in the two dimensional network of the ER and nuclear envelope it has long been assumed that their lipid composition is the same. However, emerging evidence suggests that the nuclear envelope harbors distinct regulators of phospholipid metabolism that may lead to its unique lipid composition.
Our lab harnesses the powerful tools to identify genetic pathways and gene function in C. elegans and cutting-edge microscopy approaches amenable to live imaging of mammalian cells to define mechanisms that control nuclear envelope dynamics. We study nuclear envelope reformation in mitosis and interphase nuclear rupture and repair - two specialized processes that require local and global changes in membrane structure and protein recruitment and as such provide tractable systems to dissect the molecular mechanisms underpinning lipid-mediated regulation of nuclear envelope dynamics in genome protection.
Medical Research Interests
Public Health Interests
ORCID
0000-0002-6583-5055- View Lab Website
Bahmanyar lab
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Alyssa Laffitte
Christian Schlieker, PhD
Joerg Bewersdorf, PhD
Kimberley Gibson, MSc, BAS
Nuclear Envelope
Endoplasmic Reticulum
Lipid Metabolism
Caenorhabditis elegans
Organelles
Publications
2024
The evolutionary origins and ancestral features of septins
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The evolutionary origins and ancestral features of septins. Frontiers In Cell And Developmental Biology 2024, 12: 1406966. PMID: 38994454, PMCID: PMC11238149, DOI: 10.3389/fcell.2024.1406966.Peer-Reviewed Original ResearchConceptsArginine fingerAncestral featuresEvolutionary originAncestral-sequence reconstructionChlorophyte green algaeFunction of septinsEukaryotic common ancestorGroups of orthologsCoiled-coil domainDiverse molecular functionsGuanine-nucleotide binding proteinsGlaucophyte algaeNon-opisthokontsGTPase domainDuplication eventsPhylogenetic relationshipsAncestral functionOrganelle fissionPhylogenetic treeAncestral traitCiliate speciesPhylogenetic groupsInteraction motifsAmphipathic helixCommon ancestorMechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein
Anjur-Dietrich M, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley M, Needleman D. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Developmental Cell 2024, 59: 2429-2442.e4. PMID: 38866013, DOI: 10.1016/j.devcel.2024.05.022.Peer-Reviewed Original ResearchConceptsDifferential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage
Rodríguez J, Uche O, Gao S, Lee S, Airola M, Bahmanyar S. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage. Molecular Biology Of The Cell 2024, 35: ar101. PMID: 38776127, PMCID: PMC11244170, DOI: 10.1091/mbc.e23-09-0382.Peer-Reviewed Original ResearchConceptsLipin-1Lipid synthesisPhosphatase 1Lipid storageLipid dropletsLipid droplet biogenesisER enzymeER sizeER expansionCellular demandAmphipathic helixSynthesis of glycerophospholipidsProteasomal degradationRegulatory subunitMammalian cellsMembrane expansionN-terminusBinding interfaceLipid intermediatesNuclear envelopeMembrane synthesisLipidMetabolic conditionsBiogenesisLipinStructure and mechanism of the human CTDNEP1–NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology
Gao S, Rodríguez J, Bahmanyar S, Airola M. Structure and mechanism of the human CTDNEP1–NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321167121. PMID: 38776370, PMCID: PMC11145253, DOI: 10.1073/pnas.2321167121.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsProtein phosphatase complexPhosphatase complexER membrane biogenesisHigh-resolution crystal structuresProtein serine/threonine phosphatasesCancer-associated mutationsDevelopment of medulloblastomaMembrane biogenesisSubstrate recognitionER expansionActive siteRegulatory subunitSubstrate peptideMammalian cellsSerine/threonine phosphataseIdentical phenotypesArg residuesMolecular detailsSubunit 1Phosphatase 1Inactivating mutationsPeptide sequencesAggressive childhood cancerMutationsPhosphatase activity
2023
Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure
Barger S, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure. Journal Of Cell Science 2023, 136: jcs261385. PMID: 37795681, PMCID: PMC10668030, DOI: 10.1242/jcs.261385.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsNuclear envelope assemblySpindle microtubulesNE assemblyEnvelope assemblyC. elegans oocytesLEM-2C. elegansHelix domainBAF-1Family proteinsNucleoplasmic poolNE formationDistinct rolesMicrotubulesAdditional roleNE stabilityPermeability barrierRedundant mechanismsBAFProteinEmbryo survivalBindingAssemblyElegansAutointegrationA membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope
Lee S, Rodrı́guez J, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. Journal Of Cell Biology 2023, 222: e202304026. PMID: 37382667, PMCID: PMC10309186, DOI: 10.1083/jcb.202304026.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsAmphipathic helixDirect lipid-protein interactionsNuclear envelopeLipid-protein interactionsLipid compositionPhosphatidic acid phosphatase lipin-1INM proteomeNucleoplasmic domainOrganelle identityProteasomal regulationMembrane domainsAnimal cellsProteasomal degradationMaster regulatorProtein degradationLipid environmentLipin-1Packing defectsDAG speciesCTDNEP1Metabolism impactsSUN2Disease mechanismsMetabolismBroad implications
2022
Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. ELife 2022, 11: e75513. PMID: 35852146, PMCID: PMC9296133, DOI: 10.7554/elife.75513.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsNuclear pore complexNPC assemblyMembrane biogenesisNE formationNPC densityNuclear pore complex assemblyEndoplasmic reticulumPore complex assemblyNuclear growthPore complexNDC1Redundant rolesComplex assemblyNPC numberBiogenesisMembrane incorporationFast turnoverNuclear formationBilayer lipidsNup53Membrane synthesisFirst divisionAssemblyGrowthNup160
2021
Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation
Merta H, Carrasquillo Rodríguez JW, Anjur-Dietrich MI, Vitale T, Granade ME, Harris TE, Needleman DJ, Bahmanyar S. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Developmental Cell 2021, 56: 3364-3379.e10. PMID: 34852214, PMCID: PMC8692360, DOI: 10.1016/j.devcel.2021.11.009.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsChromosome missegregationEndoplasmic reticulumLipin-1Accurate chromosome segregationER membrane biogenesisCell cycle regulationPhosphatidic acid phosphatase lipin-1Chromosome segregationMembrane biogenesisER membraneChromosome movementMitotic fidelityCycle regulationER sizeMitosis resultsMitotic cytoplasmFormation of micronucleiMitotic cellsMitotic errorsMissegregationER reorganizationHuman cellsBiophysical propertiesCancer cellsLipid metabolismCoupling lipid synthesis with nuclear envelope remodeling
Barger SR, Penfield L, Bahmanyar S. Coupling lipid synthesis with nuclear envelope remodeling. Trends In Biochemical Sciences 2021, 47: 52-65. PMID: 34556392, PMCID: PMC9943564, DOI: 10.1016/j.tibs.2021.08.009.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsNuclear envelopeEndoplasmic reticulumNuclear membraneNuclear envelope remodelingLipid-protein interactionsBiosynthesis of lipidsNE remodelingGenome protectionDynamic remodeling processesNE dynamicsLipid speciesCell growthBilayer lipidsLipid synthesisNew roleMembraneLipidsRecent evidenceRemodeling processGenomeRemodelingBiosynthesisProtective barrierSpeciesProtein
2020
Lipid and protein dynamics that shape nuclear envelope identity
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Molecular Biology Of The Cell 2020, 31: 1315-1323. PMID: 32530796, PMCID: PMC7353140, DOI: 10.1091/mbc.e18-10-0636.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsNuclear envelopeEndoplasmic reticulumMembrane fusionNuclear pore complex biogenesisUnique protein compositionBulk endoplasmic reticulumDe novo lipid synthesisNPC biogenesisComplex biogenesisNovo lipid synthesisLipid asymmetryProtein dynamicsProtein compositionElusive mechanismLipid synthesisLipid bilayersBiogenesisPermeability barrierFunctional specializationMajor threatLipid metabolismUnique compositionMitosisReticulumCompartmentalization
Academic Achievements & Community Involvement
honor Women in Cell Biology (WICB) Junior Award for Excellence in Research
National AwardAmerican Society for Cell Biology (ASCB)Details12/04/2022United Stateshonor NSF CAREER Award
National AwardNSFDetails01/01/2018United Stateshonor The Hartwell Foundation Postdoctoral Research Fellowship
UnknownDetails04/01/2011United Stateshonor First Bank of America Fellow of the A.P. Giannini Foundation
UnknownDetails03/01/2009United Stateshonor A.P. Giannini Foundation Postdoctoral Research Fellowship
UnknownDetails03/01/2009United States
News & Links
Get In Touch
Contacts
Locations
Yale Science Building
Academic Office
260 Whitney Avenue, Ste 116
New Haven, CT 06511