2024
The evolutionary origins and ancestral features of septins
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The evolutionary origins and ancestral features of septins. Frontiers In Cell And Developmental Biology 2024, 12: 1406966. PMID: 38994454, PMCID: PMC11238149, DOI: 10.3389/fcell.2024.1406966.Peer-Reviewed Original ResearchArginine fingerAncestral featuresEvolutionary originAncestral-sequence reconstructionChlorophyte green algaeFunction of septinsEukaryotic common ancestorGroups of orthologsCoiled-coil domainDiverse molecular functionsGuanine-nucleotide binding proteinsGlaucophyte algaeNon-opisthokontsGTPase domainDuplication eventsPhylogenetic relationshipsAncestral functionOrganelle fissionPhylogenetic treeAncestral traitCiliate speciesPhylogenetic groupsInteraction motifsAmphipathic helixCommon ancestorMechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein
Anjur-Dietrich M, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley M, Needleman D. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Developmental Cell 2024, 59: 2429-2442.e4. PMID: 38866013, DOI: 10.1016/j.devcel.2024.05.022.Peer-Reviewed Original ResearchDifferential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage
Rodríguez J, Uche O, Gao S, Lee S, Airola M, Bahmanyar S. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage. Molecular Biology Of The Cell 2024, 35: ar101. PMID: 38776127, PMCID: PMC11244170, DOI: 10.1091/mbc.e23-09-0382.Peer-Reviewed Original ResearchLipin-1Lipid synthesisPhosphatase 1Lipid storageLipid dropletsLipid droplet biogenesisER enzymeER sizeER expansionCellular demandAmphipathic helixSynthesis of glycerophospholipidsProteasomal degradationRegulatory subunitMammalian cellsMembrane expansionN-terminusBinding interfaceLipid intermediatesNuclear envelopeMembrane synthesisLipidMetabolic conditionsBiogenesisLipinStructure and mechanism of the human CTDNEP1–NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology
Gao S, Rodríguez J, Bahmanyar S, Airola M. Structure and mechanism of the human CTDNEP1–NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321167121. PMID: 38776370, PMCID: PMC11145253, DOI: 10.1073/pnas.2321167121.Peer-Reviewed Original ResearchConceptsProtein phosphatase complexPhosphatase complexER membrane biogenesisHigh-resolution crystal structuresProtein serine/threonine phosphatasesCancer-associated mutationsDevelopment of medulloblastomaMembrane biogenesisSubstrate recognitionER expansionActive siteRegulatory subunitSubstrate peptideMammalian cellsSerine/threonine phosphataseIdentical phenotypesArg residuesMolecular detailsSubunit 1Phosphatase 1Inactivating mutationsPeptide sequencesAggressive childhood cancerMutationsPhosphatase activity
2023
Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure
Barger S, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure. Journal Of Cell Science 2023, 136: jcs261385. PMID: 37795681, PMCID: PMC10668030, DOI: 10.1242/jcs.261385.Peer-Reviewed Original ResearchConceptsNuclear envelope assemblySpindle microtubulesNE assemblyEnvelope assemblyC. elegans oocytesLEM-2C. elegansHelix domainBAF-1Family proteinsNucleoplasmic poolNE formationDistinct rolesMicrotubulesAdditional roleNE stabilityPermeability barrierRedundant mechanismsBAFProteinEmbryo survivalBindingAssemblyElegansAutointegrationA membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope
Lee S, Rodrı́guez J, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. Journal Of Cell Biology 2023, 222: e202304026. PMID: 37382667, PMCID: PMC10309186, DOI: 10.1083/jcb.202304026.Peer-Reviewed Original ResearchConceptsAmphipathic helixDirect lipid-protein interactionsNuclear envelopeLipid-protein interactionsLipid compositionPhosphatidic acid phosphatase lipin-1INM proteomeNucleoplasmic domainOrganelle identityProteasomal regulationMembrane domainsAnimal cellsProteasomal degradationMaster regulatorProtein degradationLipid environmentLipin-1Packing defectsDAG speciesCTDNEP1Metabolism impactsSUN2Disease mechanismsMetabolismBroad implications
2022
Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. ELife 2022, 11: e75513. PMID: 35852146, PMCID: PMC9296133, DOI: 10.7554/elife.75513.Peer-Reviewed Original ResearchConceptsNuclear pore complexNPC assemblyMembrane biogenesisNE formationNPC densityNuclear pore complex assemblyEndoplasmic reticulumPore complex assemblyNuclear growthPore complexNDC1Redundant rolesComplex assemblyNPC numberBiogenesisMembrane incorporationFast turnoverNuclear formationBilayer lipidsNup53Membrane synthesisFirst divisionAssemblyGrowthNup160
2021
Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation
Merta H, Carrasquillo Rodríguez JW, Anjur-Dietrich MI, Vitale T, Granade ME, Harris TE, Needleman DJ, Bahmanyar S. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Developmental Cell 2021, 56: 3364-3379.e10. PMID: 34852214, PMCID: PMC8692360, DOI: 10.1016/j.devcel.2021.11.009.Peer-Reviewed Original ResearchConceptsChromosome missegregationEndoplasmic reticulumLipin-1Accurate chromosome segregationER membrane biogenesisCell cycle regulationPhosphatidic acid phosphatase lipin-1Chromosome segregationMembrane biogenesisER membraneChromosome movementMitotic fidelityCycle regulationER sizeMitosis resultsMitotic cytoplasmFormation of micronucleiMitotic cellsMitotic errorsMissegregationER reorganizationHuman cellsBiophysical propertiesCancer cellsLipid metabolismCoupling lipid synthesis with nuclear envelope remodeling
Barger SR, Penfield L, Bahmanyar S. Coupling lipid synthesis with nuclear envelope remodeling. Trends In Biochemical Sciences 2021, 47: 52-65. PMID: 34556392, PMCID: PMC9943564, DOI: 10.1016/j.tibs.2021.08.009.Peer-Reviewed Original ResearchConceptsNuclear envelopeEndoplasmic reticulumNuclear membraneNuclear envelope remodelingLipid-protein interactionsBiosynthesis of lipidsNE remodelingGenome protectionDynamic remodeling processesNE dynamicsLipid speciesCell growthBilayer lipidsLipid synthesisNew roleMembraneLipidsRecent evidenceRemodeling processGenomeRemodelingBiosynthesisProtective barrierSpeciesProtein
2020
Lipid and protein dynamics that shape nuclear envelope identity
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Molecular Biology Of The Cell 2020, 31: 1315-1323. PMID: 32530796, PMCID: PMC7353140, DOI: 10.1091/mbc.e18-10-0636.Peer-Reviewed Original ResearchConceptsNuclear envelopeEndoplasmic reticulumMembrane fusionNuclear pore complex biogenesisUnique protein compositionBulk endoplasmic reticulumDe novo lipid synthesisNPC biogenesisComplex biogenesisNovo lipid synthesisLipid asymmetryProtein dynamicsProtein compositionElusive mechanismLipid synthesisLipid bilayersBiogenesisPermeability barrierFunctional specializationMajor threatLipid metabolismUnique compositionMitosisReticulumCompartmentalizationThe Endoplasmic Reticulum Regulates Membraneless Organelles through Contact Sites
Lee S, Bahmanyar S. The Endoplasmic Reticulum Regulates Membraneless Organelles through Contact Sites. Biochemistry 2020, 59: 1716-1717. PMID: 32324384, PMCID: PMC10026189, DOI: 10.1021/acs.biochem.0c00232.Peer-Reviewed Original ResearchRegulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure
Penfield L, Shankar R, Szentgyörgyi E, Laffitte A, Mauro MS, Audhya A, Müller-Reichert T, Bahmanyar S. Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. Journal Of Cell Biology 2020, 219: e201908179. PMID: 32271860, PMCID: PMC7199858, DOI: 10.1083/jcb.201908179.Peer-Reviewed Original ResearchConceptsER membraneNuclear permeability barrierESCRT-III componentsC. elegans oocytesMeiotic spindle microtubulesDe novo glycerolipid synthesisPermeability barrierGlycerolipid synthesisESCRT componentsESCRT-IIIProtein phosphataseCytoplasmic membraneSpindle microtubulesNE permeabilityMeiotic spindleLipid synthesis
2018
Dynamic nanoscale morphology of the ER surveyed by STED microscopy
Schroeder LK, Barentine AES, Merta H, Schweighofer S, Zhang Y, Baddeley D, Bewersdorf J, Bahmanyar S. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. Journal Of Cell Biology 2018, 218: 83-96. PMID: 30442642, PMCID: PMC6314542, DOI: 10.1083/jcb.201809107.Peer-Reviewed Original ResearchThe Inner Nuclear Membrane Takes On Lipid Metabolism
Merta H, Bahmanyar S. The Inner Nuclear Membrane Takes On Lipid Metabolism. Developmental Cell 2018, 47: 397-399. PMID: 30458132, DOI: 10.1016/j.devcel.2018.11.005.Peer-Reviewed Original ResearchDynein-pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair
Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA, Biggs R, Wu HY, Broberg C, Needleman D, Bahmanyar S. Dynein-pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Molecular Biology Of The Cell 2018, 29: mbc.e17-06-0374. PMID: 29386297, PMCID: PMC5905298, DOI: 10.1091/mbc.e17-06-0374.Peer-Reviewed Original Research