2024
Exploring Backdoor Attacks in Off-the-Shelf Unsupervised Domain Adaptation for Securing Cardiac MRI-Based Diagnosis
Liu X, Xing F, Gaggin H, Kuo C, El Fakhri G, Woo J. Exploring Backdoor Attacks in Off-the-Shelf Unsupervised Domain Adaptation for Securing Cardiac MRI-Based Diagnosis. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39421190, PMCID: PMC11483644, DOI: 10.1109/isbi56570.2024.10635403.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domain modelBackdoor attacksDomain adaptationTraining dataLabeled source domain dataSusceptible to backdoor attacksAccurate pseudo labelsDomain modelSource domain dataPatient data privacyTarget training dataOff-the-shelfPseudo-labelsData privacySource domainMulti-vendorRandom initializationTraining phaseDomain dataDiagnosis modelTarget modelMulti-diseaseAttacksAuxiliary model
2023
Self-Supervised Domain Adaptive Segmentation of Breast Cancer via Test-Time Fine-Tuning
Lee K, Lee H, El Fakhri G, Woo J, Hwang J. Self-Supervised Domain Adaptive Segmentation of Breast Cancer via Test-Time Fine-Tuning. Lecture Notes In Computer Science 2023, 14220: 539-550. DOI: 10.1007/978-3-031-43907-0_52.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainState-of-the-art performanceUnsupervised domain adaptation modelWell-trained deep learning modelDomain adaptation tasksDomain adaptive segmentationState-of-the-artAdaptive feature extractionFine-tuning phaseFeatures of datasetsLarge-scale datasetsDeep learning modelsDomain adaptationUnlabeled dataLabeled dataSegmentation taskNetwork architectureSource domainFeature extractionLatent featuresModel deploymentNetwork parametersBreast cancer datasetAdaptive segmentationIncremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI
Liu X, Shih H, Xing F, Santarnecchi E, El Fakhri G, Woo J. Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI. Lecture Notes In Computer Science 2023, 14221: 46-56. PMID: 38665992, PMCID: PMC11045038, DOI: 10.1007/978-3-031-43895-0_5.Peer-Reviewed Original ResearchDeep learningDL modelsBrain tumor segmentation taskAbsence of training dataIncremental learning settingSegmenting various anatomical structuresBig medical dataInitial model trainingTumor segmentation taskBatch renormalizationCatastrophic forgettingIncremental learningSegmentation taskSource domainTraining dataModel trainingLearning structureSegmentation modelNetwork optimizationDiverse datasetsMedical dataEvolving environmentLearning settingsDistribution shiftsIncremental structureAttentive continuous generative self-training for unsupervised domain adaptive medical image translation
Liu X, Prince J, Xing F, Zhuo J, Reese T, Stone M, El Fakhri G, Woo J. Attentive continuous generative self-training for unsupervised domain adaptive medical image translation. Medical Image Analysis 2023, 88: 102851. PMID: 37329854, PMCID: PMC10527936, DOI: 10.1016/j.media.2023.102851.Peer-Reviewed Original ResearchConceptsUnsupervised domain adaptationImage translationProblem of domain shiftSelf-trainingImage modality translationLabeled source domainTarget domain dataSelf-attention schemeAlternating optimization schemeHeterogeneous target domainContinuous value predictionPseudo-labelsDomain adaptationUDA methodsDomain shiftSoftmax probabilitiesSource domainTarget domainVariational BayesBackground regionsTranslation tasksTraining processDomain dataGeneration taskOptimization scheme
2022
Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation
Liu X, Xing F, El Fakhri G, Woo J. Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation. Medical Image Analysis 2022, 83: 102641. PMID: 36265264, PMCID: PMC10016738, DOI: 10.1016/j.media.2022.102641.Peer-Reviewed Original ResearchConceptsUnsupervised domain adaptationUnsupervised domain adaptation methodsSource domain dataBN statisticsTarget domainLabeled source domain dataDomain dataLabeled source domainSelf-training strategyPatient data privacyHeterogeneous target domainBrain tumor segmentationPseudo-labelsDomain adaptationUnsupervised adaptationData privacySegmentation taskSource domainImage segmentationVital protocolAdaptation frameworkDecay strategyBoost performanceModel adaptationTumor segmentationUnsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
Liu X, Yoo C, Xing F, Kuo C, Fakhri G, Kang J, Woo J. Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation. Frontiers In Neuroscience 2022, 16: 837646. PMID: 35720708, PMCID: PMC9201342, DOI: 10.3389/fnins.2022.837646.Peer-Reviewed Original ResearchUnsupervised domain adaptationDomain adaptationSource domainTarget domainLabeled source domain to unlabeled target domainTransfer of domain knowledgeTarget-specific representationsUnlabeled target domainTarget domain dataKnowledge distillation schemeDeep learning backbonesEntropy minimizationTrained model parametersDifficulty of labelingDomain knowledgeSensitive informationPrivacy concernsPerformance gainsNetwork parametersSegmentation modelDomain dataSource dataCross-center collaborationDistillation schemePotential leaksUnsupervised domain adaptation for segmentation with black-box source model
Liu X, Yoo C, Xing F, Kuo C, El Fakhri G, Kang J, Woo J. Unsupervised domain adaptation for segmentation with black-box source model. Proceedings Of SPIE--the International Society For Optical Engineering 2022, 12032: 1203210-1203210-6. PMID: 35983176, PMCID: PMC9385170, DOI: 10.1117/12.2607895.Peer-Reviewed Original ResearchUnsupervised domain adaptationSource domainDomain adaptationTarget-specific representationsLabeled source domainUnlabeled target domainTarget domain dataWell-labeled dataKnowledge distillation schemeTrained model parametersModel adaptation approachOriginal source dataDifficulty of labelingTarget domainSegmentation modelDomain dataTransfer knowledgeEntropy minimizationAdaptive approachSource dataConventional solutionsPractical solutionDistillation schemePrivacyLarge-scaleDeep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives
Liu X, Yoo C, Xing F, Oh H, Fakhri G, Kang J, Woo J. Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives. APSIPA Transactions On Signal And Information Processing 2022, 11: e25. DOI: 10.1561/116.00000192.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainLabeled source domain dataOut-of-distribution detectionUnlabeled target domain dataOut-of-distribution dataDomain dataTarget domain dataOut-of-distributionSource domain dataDeep neural networksNatural image processingMedical image analysisNatural language processingReal-world problemsDomain adaptationLabeled datasetSource domainDomain generalizationDeep learningNeural networkLanguage processingImpressive performanceTime series data analysisPerformance drop
2021
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation
Liu X, Xing F, Yang C, El Fakhri G, Woo J. Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation. Lecture Notes In Computer Science 2021, 12902: 549-559. PMID: 34734216, PMCID: PMC8562716, DOI: 10.1007/978-3-030-87196-3_51.Peer-Reviewed Original ResearchUnsupervised domain adaptationSegmentation taskSource domainTarget domainUnsupervised domain adaptation methodsLabeled source domainSource domain dataUnsupervised learning methodDomain adaptationUDA methodsPrivacy issuesLearning methodsAdaptation frameworkDomain dataData storageTransfer knowledgeBatch statisticsSource dataOptimization objectivesAdaptation stageTaskFrameworkPrivacyDomainBraTSDomain Generalization under Conditional and Label Shifts via Variational Bayesian Inference
Liu X, Hu B, Jin L, Han X, Xing F, Ouyang J, Lu J, El Fakhri G, Woo J. Domain Generalization under Conditional and Label Shifts via Variational Bayesian Inference. 2021, 881-887. DOI: 10.24963/ijcai.2021/122.Peer-Reviewed Original ResearchDomain generalizationDomain-invariant feature learningVariational Bayesian inference frameworkLabel shiftCross-domain accuracyLabeled source domainVariational Bayesian inferenceFeature learningBayesian inference frameworkLatent spaceSource domainTarget domainDistribution matchingTransfer knowledgeInference frameworkSuperior performanceP(x|yBayesian inferenceLabelingDomainFrameworkGeneralizationBenchmarksPosterior alignmentLearning