2024
A salt bridge of the C‐terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity
Zavala E, Dansereau S, Burke M, Lipchock J, Maschietto F, Batista V, Loria J. A salt bridge of the C‐terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity. Protein Science 2024, 33: e5009. PMID: 38747379, PMCID: PMC11094782, DOI: 10.1002/pro.5009.Peer-Reviewed Original ResearchConceptsCatalytic activityPhenylphosphonic acidAnalysis of molecular dynamics trajectoriesNMR chemical shiftsSalt bridgesMolecular dynamics trajectoriesC-terminal carboxyl groupChemical shiftsCombination of solution NMRMolecular dynamicsGuanidinium moietyCarboxyl groupsPara-nitrophenylphosphateSolution NMRActive site inhibitorsHistidine phosphataseActive siteElectrostatic interactionsDynamics trajectoriesEnzymatic functionC-terminusGlycine residuesSubstrate affinityBiochemical experimentsBinding affinity
2010
Hypercoordination in triphenyl oxinates of the group 14 elements
Yoder C, Griffith A, DeToma A, Gettel C, Schaeffer C. Hypercoordination in triphenyl oxinates of the group 14 elements. Journal Of Organometallic Chemistry 2010, 695: 518-523. DOI: 10.1016/j.jorganchem.2009.11.027.Peer-Reviewed Original ResearchGroup 14 elementsChemical shiftsNMR spectraGeometrical isomersNMR chemical shiftsCentral metal atomBond coupling constantsOne-bond coupling constantsCentral metalMonodentate fashionIpso carbonMetal atomsCentral atomNMR dataMolecular modelingSodium saltOxinateStrong interactionRapid exchangeCoupling constantsCase of leadAtomsLigandsRoom temperatureSodium acetateUse of 73Ge NMR Spectroscopy and X-ray Crystallography for the Study of Electronic Interactions in Substituted Tetrakis(phenyl)-, -(phenoxy)-, and -(thiophenoxy)germanes
Yoder C, Agee T, Griffith A, Schaeffer C, Carroll M, DeToma A, Fleisher A, Gettel C, Rheingold A. Use of 73Ge NMR Spectroscopy and X-ray Crystallography for the Study of Electronic Interactions in Substituted Tetrakis(phenyl)-, -(phenoxy)-, and -(thiophenoxy)germanes. Organometallics 2010, 29: 582-590. DOI: 10.1021/om900905c.Peer-Reviewed Original ResearchChemical shiftsSingle-crystal X-ray diffraction resultsMolecular modelingNMR chemical shiftsSolid-state structuresRapid quadrupolar relaxationX-ray crystallographyVan der WaalsAnalogous phenylX-ray diffraction resultsAlkoxy oxygenNMR spectroscopyMethoxy oxygenP-OCH3Bond distancesElectronic interactionsAlkoxy groupsAromatic carbonBond anglesTetrakis derivativesCentral atomX-ray dataIntramolecular interactionsO-CH3P-CF3
2006
NMR Shifts, Orbitals, and M···H−X Bonding in d8 Square Planar Metal Complexes
Zhang Y, Lewis J, Bergman R, Ellman J, Oldfield E. NMR Shifts, Orbitals, and M···H−X Bonding in d8 Square Planar Metal Complexes. Organometallics 2006, 25: 3515-3519. DOI: 10.1021/om060163h.Peer-Reviewed Original ResearchProtein backbone hydrogen bondsSquare planar metal complexesProton NMR chemical shiftsD8 square-planar complexesNMR chemical shift changesPlanar metal complexesNMR chemical shiftsHydrogen-bonded complexesSquare-planar complexesChemical shift changesCombination of DFTMetal complexesBackbone hydrogen bondsPlanar complexesChemical shiftsPt complexesDFT calculationsAIM analysisNMR shiftsHydrogen bondsPartial covalenceElectrostatic natureMetal bondingShift changesTensor orientations
2005
QM/MM Study of the NMR Spectroscopy of the Retinyl Chromophore in Visual Rhodopsin
Gascón J, Sproviero E, Batista V. QM/MM Study of the NMR Spectroscopy of the Retinyl Chromophore in Visual Rhodopsin. Journal Of Chemical Theory And Computation 2005, 1: 674-685. PMID: 26641690, DOI: 10.1021/ct0500850.Peer-Reviewed Original ResearchGauge independent atomic orbital (GIAO) methodQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsSolid-state NMR experimentsQM/MM studyDensity functional theory B3LYP/6Nuclear magnetic resonance spectraNMR chemical shiftsFirst-principles interpretationLevel of theoryMagnetic resonance spectraAtomic orbitals methodNMR spectroscopyChemical shiftsMM studyNMR experimentsRetinyl chromophoreAb initioOrbital methodResonance spectraAtomistic modelVisual rhodopsinChromophoreField calculationsPrototypical G protein-coupled receptorB3LYP/6
1998
Modification of Platinum(II) Antitumor Complexes with Sulfur Ligands. 2. Reactivity and Nucleotide Binding Properties of Cationic Complexes of the Types [PtCl(diamine)(L)]NO3 and [{PtCl(diamine)}2(L-L)](NO3)2 (L = Monofunctional Thiourea Derivative; L-L = Bifunctional Thiourea Derivative) in Relation to Their Cytotoxicity
Bierbach U, Roberts J, Farrell N. Modification of Platinum(II) Antitumor Complexes with Sulfur Ligands. 2. Reactivity and Nucleotide Binding Properties of Cationic Complexes of the Types [PtCl(diamine)(L)]NO3 and [{PtCl(diamine)}2(L-L)](NO3)2 (L = Monofunctional Thiourea Derivative; L-L = Bifunctional Thiourea Derivative) in Relation to Their Cytotoxicity. Inorganic Chemistry 1998, 37: 717-723. DOI: 10.1021/ic970421q.Peer-Reviewed Original ResearchAntitumor complexesAqueous solution chemistryDinuclear complexes 3Dinuclear compound 3NMR chemical shiftsN-type conformationComplexes 3Thiourea ligandsCationic complexesSulfur ligandsNMR spectroscopyChemical shiftsSolution chemistryDinuclear adductsIntramolecular disproportionationAnalogous reactionCompound 3Aqueous solutionMonofunctional adductsBifunctional adductsRate of hydrolysisAdductsBinding propertiesChemistryCytotoxicity data
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply