2019
Metabolism and Development during Conidial Germination in Response to a Carbon-Nitrogen-Rich Synthetic or a Natural Source of Nutrition in Neurospora crassa
Wang Z, Miguel-Rojas C, Lopez-Giraldez F, Yarden O, Trail F, Townsend JP. Metabolism and Development during Conidial Germination in Response to a Carbon-Nitrogen-Rich Synthetic or a Natural Source of Nutrition in Neurospora crassa. MBio 2019, 10: 10.1128/mbio.00192-19. PMID: 30914504, PMCID: PMC6437048, DOI: 10.1128/mbio.00192-19.Peer-Reviewed Original ResearchConceptsDevelopmental regulatory genesVegetative growthAsexual reproductionConidial germinationRegulatory genesNutritional environmentLife historyNitrogen metabolismLife-history decisionsMode of reproductionAdaptive life historiesKnockout of genesGenome-wide transcriptomicsEarly life historySexual developmentMetabolic gene expressionReproductive dispersalSexual reproductionDevelopmental genesMetabolic genesNeurospora crassaDiverse ecosystemsNutrient conditionsGene expressionMajor switch
2017
Rice calcium‐dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose‐phosphate synthase and is required for a proper cold stress response
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium‐dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose‐phosphate synthase and is required for a proper cold stress response. Plant Cell & Environment 2017, 40: 1197-1213. PMID: 28102545, DOI: 10.1111/pce.12916.Peer-Reviewed Original ResearchConceptsCalcium-dependent protein kinaseCold stress responseStress responsePlasma membrane intrinsic proteinsMembrane intrinsic proteinsPlant tolerance mechanismsStress-inducible genesSucrose-phosphate synthaseIntrinsic proteinsPhosphoproteomic approachCalcium-dependent mannerOsCPK17Kinase assaysSignal transductionProtein kinaseRice linesNitrogen metabolismSugar metabolismOsmotic regulationGene expressionTolerance mechanismsKey messengerMembrane channelsMost membersDirect interaction
2016
Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth
Cox AG, Hwang KL, Brown KK, Evason KJ, Beltz S, Tsomides A, O’Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DY, Goessling W. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nature Cell Biology 2016, 18: 886-896. PMID: 27428308, PMCID: PMC4990146, DOI: 10.1038/ncb3389.Peer-Reviewed Original ResearchConceptsHippo pathway effector YAP1Cellular building blocksDe novo purineTransgenic zebrafishHippo signalingEffector YAP1Hippo pathwaySteady-state levelsNucleotide biosynthesisOrgan sizeAnabolic demandsNitrogen metabolismPyrimidine biosynthesisRelative isotopic enrichmentImportant regulatorNucleotide inhibitionGlutamine metabolismLiver growthYAP1BiosynthesisTumor formationPharmacological inhibitionCancer cellsLiver cancer cellsTissue growth
2013
Structures of the Bacillus subtilis Glutamine Synthetase Dodecamer Reveal Large Intersubunit Catalytic Conformational Changes Linked to a Unique Feedback Inhibition Mechanism*
Murray DS, Chinnam N, Tonthat NK, Whitfill T, Wray LV, Fisher SH, Schumacher MA. Structures of the Bacillus subtilis Glutamine Synthetase Dodecamer Reveal Large Intersubunit Catalytic Conformational Changes Linked to a Unique Feedback Inhibition Mechanism*. Journal Of Biological Chemistry 2013, 288: 35801-35811. PMID: 24158439, PMCID: PMC3861631, DOI: 10.1074/jbc.m113.519496.Peer-Reviewed Original ResearchConceptsGlutamine synthetaseCatalytic conformational changesSpecific regulatory networksActive site constructionFeedback inhibition mechanismFeedback inhibitionGS isoenzymesCatalytic glutamateActive site reorganizationRegulatory networksEnzyme active siteNitrogen metabolismProduction of glutamineSpecific residuesAdjacent subunitsRegulatory mechanismsInhibitor designConformational changesConformational alterationsGram-positive pathogensCellular studiesEssential roleActive siteRegulatory stateGln
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply