2012
Layer 6 cortical neurons require Reelin-Dab1 signaling for cellular orientation, Golgi deployment, and directed neurite growth into the marginal zone
O’Dell R, Ustine CJ, Cameron DA, Lawless SM, Williams RM, Zipfel WR, Olson EC. Layer 6 cortical neurons require Reelin-Dab1 signaling for cellular orientation, Golgi deployment, and directed neurite growth into the marginal zone. Neural Development 2012, 7: 25. PMID: 22770513, PMCID: PMC3466444, DOI: 10.1186/1749-8104-7-25.Peer-Reviewed Original ResearchConceptsEarly cortical developmentMutant cortexCortical neuronsCortical developmentPial surfaceMarginal zoneApical neuritesL6 neuronsRecombinant ReelinNeocortical neuronsNeuronal somataReelin-Dab1Arbor lengthArbor sizeExplant modelVentricular zonePioneer neuronsMutant neuronsReelinNeuronsConclusionsThese findingsMore primary processesNeuronal orientationCortexNeurite growth
2003
Adaptation and Temporal Decorrelation by Single Neurons in the Primary Visual Cortex
Wang X, Liu Y, Sanchez-Vives M, McCormick D. Adaptation and Temporal Decorrelation by Single Neurons in the Primary Visual Cortex. Journal Of Neurophysiology 2003, 89: 3279-3293. PMID: 12649312, DOI: 10.1152/jn.00242.2003.Peer-Reviewed Original ResearchConceptsPrimary visual cortical neuronsVisual cortical slicesCellular mechanismsVisual cortical neuronsIntrinsic membrane propertiesPrimary visual cortexPossible cellular mechanismsSensory inputSlow afterhyperpolarizationIntrinsic ionic currentsCortical slicesLayer 2/3Cortical neuronsNeocortical neuronsIntracellular injectionV1 neuronsNeuronal responsesVisual cortexEfficient neural codingModel neuronsReal-world sensory inputsNeuronsIonic currentsProlonged changesSingle neurons
2002
Microstructure of the neocortex: Comparative aspects
DeFelipe J, Alonso-Nanclares L, Arellano J. Microstructure of the neocortex: Comparative aspects. Brain Cell Biology 2002, 31: 299-316. PMID: 12815249, DOI: 10.1023/a:1024130211265.Peer-Reviewed Original ResearchConceptsDifferent cortical areasCortical areasExtrinsic afferent systemsNeocortex of humansInhibitory GABAergic interneuronsDensity of excitatoryNumber of synapsesSpecific cortical circuitsDistinct cortical areasSpiny cellsInhibitory circuitsGABAergic interneuronsInhibitory synapsesNeocortical neuronsNeuronal elementsPyramidal cellsAfferent systemsCortical circuitsNeocortical circuitsCortical tissueNumber of neuronsNeocortexNeuronsExcitatoryBasic microcircuit
2000
Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons
Brumberg J, Nowak L, McCormick D. Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons. Journal Of Neuroscience 2000, 20: 4829-4843. PMID: 10864940, PMCID: PMC6772270, DOI: 10.1523/jneurosci.20-13-04829.2000.Peer-Reviewed Original ResearchConceptsLayer II/III pyramidal neuronsHigh-frequency burst dischargesAction potential generationAction potentialsPyramidal neuronsCortical neuronsBurst dischargesHigh-frequency burst firingVisual cortical slicesAction potential burstsFirst action potentialBurst-firing modeHigh-frequency burstsPotential generationIonic mechanismsIntrinsic burstsCortical slicesLocal cortical networksBurst firingNeocortical neuronsIntracellular recordingsPostsynaptic neuronsATX IIQX-314Single spiking
1992
Desensitization of GABA-activated currents and channels in cultured cortical neurons
Frosch M, Lipton, Dichter M. Desensitization of GABA-activated currents and channels in cultured cortical neurons. Journal Of Neuroscience 1992, 12: 3042-3053. PMID: 1379634, PMCID: PMC6575652, DOI: 10.1523/jneurosci.12-08-03042.1992.Peer-Reviewed Original ResearchConceptsRate of desensitizationPresence of agonistInhibitory synaptic activationCultured cortical neuronsWhole-cell recording modeApplication of GABAWhole-cell modeDesensitization of GABACortical inhibitionCortical neuronsGABA responsesNeocortical neuronsSynaptic activationSame neuronsGABASingle-channel responsesDesensitizationDesensitization processNeuronsTrue declineAgonistsMembrane conductanceCell culturesRecording modeDose dependence
1990
Redox modulation of NMDA receptor-mediated Ca2+ flux in mammalian central neurons
Sucher N, Wong L, Lipton S. Redox modulation of NMDA receptor-mediated Ca2+ flux in mammalian central neurons. Neuroreport 1990, 1: 29-32. PMID: 2151794, DOI: 10.1097/00001756-199009000-00009.Peer-Reviewed Original Research
1985
Two types of muscarinic response to acetylcholine in mammalian cortical neurons.
McCormick D, Prince D. Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 6344-6348. PMID: 3862134, PMCID: PMC391050, DOI: 10.1073/pnas.82.18.6344.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidInput resistanceMuscarinic responsesPyramidal neuronsPyramidal cellsInhibitory neurotransmitter gamma-aminobutyric acidNeurotransmitter gamma-aminobutyric acidShort-latency depolarizationsShort-latency inhibitionMammalian cortical neuronsNeuronal input resistanceSlow excitatory responsesApplication of acetylcholineVoltage-dependent depolarizationCholinergic inhibitionExcitatory responsesCholinergic receptorsVoltage-dependent increaseCortical slicesGABAergic interneuronsNicotinic antagonistsCholinergic agonistsCortical neuronsSlow depolarizationNeocortical neurons
1974
Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition
Rakic P. Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition. Science 1974, 183: 425-427. PMID: 4203022, DOI: 10.1126/science.183.4123.425.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply