2019
Discordance in the Epithelial Cell-Dendritic Cell Major Histocompatibility Complex Class II Immunoproteome: Implications for Chlamydia Vaccine Development
Karunakaran KP, Yu H, Jiang X, Chan QWT, Foster LJ, Johnson RM, Brunham RC. Discordance in the Epithelial Cell-Dendritic Cell Major Histocompatibility Complex Class II Immunoproteome: Implications for Chlamydia Vaccine Development. The Journal Of Infectious Diseases 2019, 221: 841-850. PMID: 31599954, PMCID: PMC7457330, DOI: 10.1093/infdis/jiz522.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, BacterialBacterial VaccinesCD4-Positive T-LymphocytesCell LineChlamydia InfectionsChlamydia muridarumChlamydia trachomatisDendritic CellsEpithelial CellsEpitopes, T-LymphocyteFemaleHeLa CellsHistocompatibility Antigens Class IHistocompatibility Antigens Class IIHost-Pathogen InteractionsHumansMiceMice, Inbred C57BLPeptidesConceptsCD4 T cellsDendritic cellsT cellsEpithelial cellsProtective immunityEffector phaseClass IChlamydia-specific CD4 T cellsPathogen-specific T cellsClass IIMajor histocompatibility complex (MHC) class II moleculesChlamydia vaccine developmentClearance of ChlamydiaClass II epitopesClass II moleculesMHC class IMucosal epithelial cellsInfected epithelial cellsImmune miceIntracellular bacterial pathogenChlamydia vaccineC trachomatisEpithelial cell linePresent epitopesChlamydia trachomatis
2016
Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature
Foxman EF, Storer JA, Vanaja K, Levchenko A, Iwasaki A. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 8496-8501. PMID: 27402752, PMCID: PMC4968739, DOI: 10.1073/pnas.1601942113.Peer-Reviewed Original ResearchConceptsIFN-independent mechanismsEpithelial cellsHost defense strategiesHost cell deathIFN inductionHuman bronchial epithelial cellsReduced virus productionCommon cold virusInfected epithelial cellsB-cell lymphoma 2 (Bcl-2) overexpressionBronchial epithelial cellsDiverse stimuliViral replicationAntiviral pathwaysCell deathH1-HeLa cellsTemperature-dependent replicationCell typesSingle replication cycleTemperature-dependent growthReplication cycleWarmer temperaturesCool temperaturesDefense strategiesType 1 IFN response
2012
PmpG303-311, a Protective Vaccine Epitope That Elicits Persistent Cellular Immune Responses in Chlamydia muridarum-Immune Mice
Johnson RM, Yu H, Kerr MS, Slaven JE, Karunakaran KP, Brunham RC. PmpG303-311, a Protective Vaccine Epitope That Elicits Persistent Cellular Immune Responses in Chlamydia muridarum-Immune Mice. Infection And Immunity 2012, 80: 2204-2211. PMID: 22431650, PMCID: PMC3370596, DOI: 10.1128/iai.06339-11.Peer-Reviewed Original ResearchConceptsGenital tract infectionAntigen-presenting cellsT cell clonesTract infectionsMonths postinfectionImmune responseChlamydia muridarum Genital Tract InfectionProtective CD4 T cell responsesVaccine developmentPrimary genital tract infectionTh1 T cell clonesCD4 T cell responsesCD4 T-cell clonesSplenic antigen-presenting cellsAntigen-presenting cell populationsCell clonesCD4 T cellsT cell responsesCellular immune responsesProtective immune responsePromising vaccine candidateImmune C57BL/6 miceInfected epithelial cellsIrradiated splenocytesUrogenital chlamydia
2010
Chlamydia-Specific CD4 T Cell Clones Control Chlamydia muridarum Replication in Epithelial Cells by Nitric Oxide-Dependent and -Independent Mechanisms
Jayarapu K, Kerr M, Ofner S, Johnson RM. Chlamydia-Specific CD4 T Cell Clones Control Chlamydia muridarum Replication in Epithelial Cells by Nitric Oxide-Dependent and -Independent Mechanisms. The Journal Of Immunology 2010, 185: 6911-6920. PMID: 21037093, PMCID: PMC3073083, DOI: 10.4049/jimmunol.1002596.Peer-Reviewed Original ResearchConceptsCD4 T-cell clonesT cell clonesEpithelial NO productionCD4 T cellsChlamydia replicationCell clonesEpithelial cellsT cellsNO productionReproductive tract epithelial cellsT cell-mediated controlT-cell depletion studiesCell depletion studiesCell-mediated controlHuman reproductive tractT cell degranulationMHC class IIMurine genital tractTract epithelial cellsInfected epithelial cellsEpithelial tumor cell linesIntracellular bacterial pathogenBacterial clearanceCell degranulationGenital tract
2004
Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments
Sato A, Iwasaki A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 16274-16279. PMID: 15534227, PMCID: PMC528964, DOI: 10.1073/pnas.0406268101.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsAntigens, DifferentiationCaspase 1Cell DifferentiationCell MovementDendritic CellsFemaleHerpesvirus 2, HumanImmunity, InnateInterleukin-12Membrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutMyeloid Differentiation Factor 88Receptors, Cell SurfaceReceptors, ImmunologicReceptors, InterferonSignal TransductionStromal CellsTh1 CellsToll-Like ReceptorsConceptsToll-like receptorsT cell responsesPattern recognition receptorsViral infectionContribution of TLRsRecognition receptorsCell responsesEffector T cell responsesHerpes simplex virus type 2Simplex virus type 2Antiviral adaptive immunityDendritic cell compartmentEffector T cellsDendritic cell maturationMost viral infectionsVirus type 2Infected epithelial cellsMucosal infectionsT cellsAdaptive immunityAntiviral immunityInfectious agentsType 2Immune recognitionStromal cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply