2024
Integrated genetic, epigenetic, and immune landscape of TP53 mutant AML and higher risk MDS treated with azacitidine
Zeidan A, Bewersdorf J, Hasle V, Shallis R, Thompson E, de Menezes D, Rose S, Boss I, Halene S, Haferlach T, Fox B. Integrated genetic, epigenetic, and immune landscape of TP53 mutant AML and higher risk MDS treated with azacitidine. Therapeutic Advances In Hematology 2024, 15: 20406207241257904. PMID: 38883163, PMCID: PMC11180421, DOI: 10.1177/20406207241257904.Peer-Reviewed Original ResearchHigher-risk myelodysplastic syndromesAcute myeloid leukemiaBone marrowMutation statusImmune landscapeImmunological landscapeAnti-PD-L1 antibody durvalumabHR-MDS patientsWild-type acute myeloid leukemiaTP53-mutant acute myeloid leukemiaMutant acute myeloid leukemiaAzacitidine-based therapyWild-type patientsImmune checkpoint proteinsImmune checkpoint expressionT cell populationsWild-typeStatistically significant decreaseAZA therapyImmunosuppressive microenvironmentPD-L1Mutant patientsDNA methylation arraysCheckpoint expressionMyelodysplastic syndrome
2023
Clinical and research updates on the VISTA immune checkpoint: immuno-oncology themes and highlights
Noelle R, Lines J, Lewis L, Martell R, Guillaudeux T, Lee S, Mahoney K, Vesely M, Boyd-Kirkup J, Nambiar D, Scott A. Clinical and research updates on the VISTA immune checkpoint: immuno-oncology themes and highlights. Frontiers In Oncology 2023, 13: 1225081. PMID: 37795437, PMCID: PMC10547146, DOI: 10.3389/fonc.2023.1225081.Commentaries, Editorials and LettersImmune checkpoint proteinsImmune checkpointsImmune systemT-lymphocyte antigen-4Cell death protein 1V-domain immunoglobulin suppressorDeath protein 1CD28 family membersAnti-VISTA antibodyT cell activationImportant homeostatic functionsVISTA blockadePD-1Proinflammatory changesImmune effectsMyeloid suppressionAntigen-4CTLA-4Immune cellsT cellsImmune responsePreclinical studiesClinical developmentHomeostatic functionsMyeloid lineage
2019
The landscape of novel and complementary targets for immunotherapy: an analysis of gene expression in the tumor microenvironment
Gaffney SG, Perry EB, Chen PM, Greenstein A, Kaech SM, Townsend JP. The landscape of novel and complementary targets for immunotherapy: an analysis of gene expression in the tumor microenvironment. Oncotarget 2019, 10: 4532-4545. PMID: 31360302, PMCID: PMC6642048, DOI: 10.18632/oncotarget.27027.Peer-Reviewed Original Research
2017
Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management
Sznol M, Postow MA, Davies MJ, Pavlick AC, Plimack ER, Shaheen M, Veloski C, Robert C. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treatment Reviews 2017, 58: 70-76. PMID: 28689073, DOI: 10.1016/j.ctrv.2017.06.002.Peer-Reviewed Original ResearchConceptsImmune-related adverse eventsImmune checkpoint inhibitorsCytotoxic T-lymphocyte antigen-4Checkpoint inhibitorsEndocrine eventsAdverse eventsTypes of irAEsEndocrine-related adverse eventsT-lymphocyte antigen-4Replacement of hormonesDeath receptor-1Target organ damageClose patient monitoringImmune checkpoint blockadeNon-specific symptomsAppropriate laboratory testingImmune checkpoint proteinsCheckpoint blockadeGrade 1/2Organ damageClinical benefitAdrenal glandAntigen-4Endocrine functionGastrointestinal tractUnravelling the biology of SCLC: implications for therapy
Sabari J, Lok B, Laird J, Poirier J, Rudin C. Unravelling the biology of SCLC: implications for therapy. Nature Reviews Clinical Oncology 2017, 14: 549-561. PMID: 28534531, PMCID: PMC5843484, DOI: 10.1038/nrclinonc.2017.71.Peer-Reviewed Original ResearchConceptsBiology of SCLCHigh-grade neuroendocrine tumorsPARP inhibitor veliparibImmune checkpoint blockadeEncouraging clinical activityPoor overall survivalHigh mutational burdenImmune checkpoint proteinsZeste homologue 2Antibody-drug conjugatesOverall survivalRovalpituzumab tesirineLung cancerNeuroendocrine tumorsClinical trialsClinical activityMutational burdenNew therapiesTherapeutic targetingProtein 3SCLCHomologue 2PatientsPromising activityTherapy
2015
PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer
Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, Bossuyt V, Pusztai L, Lannin DR, Rimm DL. PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Immunology Research 2015, 3: 326-332. PMID: 25527356, PMCID: PMC4390454, DOI: 10.1158/2326-6066.cir-14-0133.Peer-Reviewed Original ResearchConceptsTumor-infiltrating lymphocytesPD-L1 expressionPathologic complete responseNeoadjuvant chemotherapyPD-L1Breast cancerDeath 1 ligand 1PD-L1 protein expressionYale-New Haven HospitalHigh PD-L1Antitumor immune activitySubset of patientsTriple-negative patientsBreast cancer patientsTriple-negative statusImmune checkpoint proteinsImmune regulatory moleculesNew Haven HospitalSignificant multivariate modelRabbit monoclonal antibodyTILs correlateComplete responseImmune therapyCancer patientsImmune activity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply