2021
Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas
Yeung J, Yaghoobi V, Miyagishima D, Vesely MD, Zhang T, Badri T, Nassar A, Han X, Sanmamed MF, Youngblood M, Peyre M, Kalamarides M, Rimm DL, Gunel M, Chen L. Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas. Neuro-Oncology 2021, 23: 1922-1935. PMID: 33914067, PMCID: PMC8563319, DOI: 10.1093/neuonc/noab075.Peer-Reviewed Original ResearchConceptsColony-stimulating factor-1Myeloid cellsMalignant meningiomasTumor microenvironmentCSF1/CSF1RRNA-seqRNA sequencingHuman meningiomasImmune subsetsGene expressionT cellsTreatment strategiesNormalization cancer immunotherapyImportant regulatorCell typesNovel immunocompetent murine modelDeath ligand 1 (PD-L1) expressionCell death receptor-1Immunosuppressive myeloid cellsDeath receptor-1Ligand 1 expressionFactor 1Immune cell typesImmunocompetent murine modelEffective treatment strategies
2020
Pathologic Manifestations of Gastrointestinal and Hepatobiliary Injury in Immune Checkpoint Inhibitor Therapy
Patil PA, Zhang X. Pathologic Manifestations of Gastrointestinal and Hepatobiliary Injury in Immune Checkpoint Inhibitor Therapy. Archives Of Pathology & Laboratory Medicine 2020, 145: 571-582. PMID: 32338534, DOI: 10.5858/arpa.2020-0070-ra.Peer-Reviewed Original ResearchConceptsHepatobiliary injuryCheckpoint inhibitorsCPI therapyActive colitisPathologic manifestationsCytotoxic T-lymphocyte-associated protein 4 inhibitorsT-lymphocyte-associated protein 4 inhibitorsImmune checkpoint inhibitor therapyDeath ligand 1 (PD-L1) inhibitorsAdverse effectsChronic active colitisAdministration of steroidsCheckpoint inhibitor therapyDeath receptor-1Immune checkpoint inhibitorsBile duct injuryChronic active gastritisLigand 1 inhibitorsNodular regenerative hyperplasiaSecondary sclerosing cholangitisDifferential diagnostic considerationsProtein 4 inhibitorsSeverity of injuryIschemic colitisPanlobular hepatitisDefining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce
Kluger HM, Tawbi HA, Ascierto ML, Bowden M, Callahan MK, Cha E, Chen HX, Drake CG, Feltquate DM, Ferris RL, Gulley JL, Gupta S, Humphrey RW, LaVallee TM, Le DT, Hubbard-Lucey VM, Papadimitrakopoulou VA, Postow MA, Rubin EH, Sharon E, Taube JM, Topalian SL, Zappasodi R, Sznol M, Sullivan RJ. Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. Journal For ImmunoTherapy Of Cancer 2020, 8: e000398. PMID: 32238470, PMCID: PMC7174063, DOI: 10.1136/jitc-2019-000398.Peer-Reviewed Original ResearchConceptsCancer immunotherapyClinical definitionNew agentsPD-1/PD-L1 blockadePD-1 pathway blockadeConsensus clinical definitionPD-L1 blockadeDeath receptor-1Immunotherapy of cancerStandard of careClinical trial designTreatment discontinuationMechanisms of resistancePathway blockadeClinical trialsConfirmatory scanPrimary resistancePatient benefitSecondary resistanceTrial designTreatment approachesUnmet needReceptor 1Tumor resistancePattern of response
2017
Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management
Sznol M, Postow MA, Davies MJ, Pavlick AC, Plimack ER, Shaheen M, Veloski C, Robert C. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treatment Reviews 2017, 58: 70-76. PMID: 28689073, DOI: 10.1016/j.ctrv.2017.06.002.Peer-Reviewed Original ResearchConceptsImmune-related adverse eventsImmune checkpoint inhibitorsCytotoxic T-lymphocyte antigen-4Checkpoint inhibitorsEndocrine eventsAdverse eventsTypes of irAEsEndocrine-related adverse eventsT-lymphocyte antigen-4Replacement of hormonesDeath receptor-1Target organ damageClose patient monitoringImmune checkpoint blockadeNon-specific symptomsAppropriate laboratory testingImmune checkpoint proteinsCheckpoint blockadeGrade 1/2Organ damageClinical benefitAdrenal glandAntigen-4Endocrine functionGastrointestinal tract
2010
In Vivo Regulation of Bcl6 and T Follicular Helper Cell Development
Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A, Weinstein JS, Dong X, Odegard JM, Kaech SM, Dent AL, Crotty S, Craft J. In Vivo Regulation of Bcl6 and T Follicular Helper Cell Development. The Journal Of Immunology 2010, 185: 313-326. PMID: 20519643, PMCID: PMC2891136, DOI: 10.4049/jimmunol.0904023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CommunicationCell DifferentiationCricetinaeDNA-Binding ProteinsDown-RegulationFemaleImmunophenotypingLymphocyte CooperationMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutMice, TransgenicProto-Oncogene Proteins c-bcl-6SpleenT-Lymphocyte SubsetsT-Lymphocytes, Helper-InducerUp-RegulationConceptsPD-1 upregulationIL-21IL-6B cellsFollicular helper T cellsFollicular helper cell developmentDeath receptor-1Helper T cellsCytokines IL-6B cell interactionsB cell maturationTranscriptional repressor BCL6Vivo regulationCell developmentP-selectin glycoprotein ligand-1New surface markersT cellsGerminal centersInitial upregulationReceptor 1CXCR5BCL6 upregulationCell maturationSurface markersBCL6 expression
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply