2024
Balanced steady-state free precession phase contrast at 0.55T applied to aortic flow
Xiang J, Ramasawmy R, Seemann F, Peters D, Campbell-Washburn A. Balanced steady-state free precession phase contrast at 0.55T applied to aortic flow. Journal Of Cardiovascular Magnetic Resonance 2024, 26: 101098. PMID: 39278416, PMCID: PMC11638602, DOI: 10.1016/j.jocmr.2024.101098.Peer-Reviewed Original ResearchBalanced steady state free precessionPhase contrastGradient momentsBreath-holdFree-breathing protocolFree breathingGradient echoCardiac outputFree precessionStroke volumeAortic flow quantificationAortic flowPhantomSteady state free precessionSpoiled gradient echoFlow imagingMeasured aortic flowFraction measurementsTeHealthy volunteersVelocity measurementsPlanimetry measurementsCardiac MRHealthy subjectsIncreased SNR
2023
Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling
Han P, Marin T, Zhuo Y, Ouyang J, El Fakhri G, Ma C. Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling. Magnetic Resonance Imaging 2023, 102: 126-132. PMID: 37187264, PMCID: PMC10524790, DOI: 10.1016/j.mri.2023.05.005.Peer-Reviewed Original ResearchConceptsOff-resonance effectsBalanced steady-state free precessionPhase-cycling techniqueTemporal SNRBalanced steady-state free precession acquisitionRadial sampling schemeSpoiled gradient-recalled acquisitionRadial samplingCartesian sampling schemeBalanced steady-state free precession readoutK-space dataSampling schemeSpin labelingSteady-state free precessionK-spaceImage readoutBanding artifactsMotion-related artifactsReadoutFree precessionArterial spin labelingImage reconstructionParallel imagingImaging timePerfusion-weighted imaging
2021
Sensitivity of Myocardial Radiomic Features to Imaging Parameters in Cardiac MR Imaging
Jang J, El‐Rewaidy H, Ngo L, Mancio J, Csecs I, Rodriguez J, Pierce P, Goddu B, Neisius U, Manning W, Nezafat R. Sensitivity of Myocardial Radiomic Features to Imaging Parameters in Cardiac MR Imaging. Journal Of Magnetic Resonance Imaging 2021, 54: 787-794. PMID: 33650227, PMCID: PMC9190024, DOI: 10.1002/jmri.27581.Peer-Reviewed Original ResearchConceptsRadiomic featuresIn-plane spatial resolutionImaging parametersSpatial resolutionBalanced steady-state free precessionCardiac magnetic resonanceIn-plane resolutionStandardized mean differenceSteady-state free precessionParallel imaging techniquesFlip angleCardiac MRCardiac MR imagesFree precessionMean differenceSlice thicknessMR imagingMagnetic resonanceCalculated valuesMyocardial contoursSequence parametersImaging techniquesWavelet filters
2019
The effect of contrast agents on left ventricular parameters calculated by a threshold-based software module: does it truly matter?
Szűcs A, Kiss A, Suhai F, Tóth A, Gregor Z, Horváth M, Czimbalmos C, Csécs I, Dohy Z, Szabó L, Merkely B, Vágó H. The effect of contrast agents on left ventricular parameters calculated by a threshold-based software module: does it truly matter? The International Journal Of Cardiovascular Imaging 2019, 35: 1683-1689. PMID: 31037474, PMCID: PMC6700040, DOI: 10.1007/s10554-019-01587-9.Peer-Reviewed Original ResearchMeSH KeywordsAdultBiomechanical PhenomenaCase-Control StudiesContrast MediaFemaleHeart VentriclesHumansImage Interpretation, Computer-AssistedIsolated Noncompaction of the Ventricular MyocardiumMagnetic Resonance Imaging, CineMaleMeglumineMiddle AgedOrganometallic CompoundsPredictive Value of TestsProspective StudiesReproducibility of ResultsSoftwareStroke VolumeVentricular Function, LeftYoung AdultConceptsSteady-state free precessionGadobenate dimeglumineCine imagesLeft ventricular parametersAdministration of contrast agentContrast agentsLeft ventricular volumeBlood-myocardium contrastEffects of contrast agentsNoncompaction cardiomyopathyVentricular parametersTrabecular musclesVentricular volumeCardiac parametersPre-CASShort axisTime-saving techniqueGadobutrolTrabecular massH groupFree precessionTrabecularEffect of CALVmassCardiomyopathy
2016
DC artifact correction for arbitrary phase-cycling sequence
Han P, Park H, Park S. DC artifact correction for arbitrary phase-cycling sequence. Magnetic Resonance Imaging 2016, 38: 21-26. PMID: 27998747, DOI: 10.1016/j.mri.2016.12.015.Peer-Reviewed Original Research
2015
Whole‐brain perfusion imaging with balanced steady‐state free precession arterial spin labeling
Han P, Ye J, Kim E, Choi S, Park S. Whole‐brain perfusion imaging with balanced steady‐state free precession arterial spin labeling. NMR In Biomedicine 2015, 29: 264-274. PMID: 26676386, DOI: 10.1002/nbm.3463.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioBalanced steady-state free precessionTotal scan timeCompressive sensingReduced susceptibility artifactsPerfusion imagingWhole-brain perfusion imagingScan timeSusceptibility artifactsPseudo-continuous ASLReadout timeCS approachSteady-state free precessionAcquisition of perfusion imagesSegmentation approachFree precessionBSSFP readoutArterial spin labeling (ASL) perfusionSpatial resolutionImage qualityDistortion-freeReadoutHigh-resolutionTemporal resolutionImagesCompressed Sensing for fMRI: Feasibility Study on the Acceleration of Non‐EPI fMRI at 9.4T
Han P, Park S, Kim S, Ye J. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non‐EPI fMRI at 9.4T. BioMed Research International 2015, 2015: 131926. PMID: 26413503, PMCID: PMC4564593, DOI: 10.1155/2015/131926.Peer-Reviewed Original ResearchConceptsCompressive sensingBalanced steady-state free precessionSensitive to image distortionsHigh-resolution fMRI techniqueMagnetic field inhomogeneityLocal magnetic field inhomogeneitiesConventional functional magnetic resonance imagingCS reconstructionGradient-recalled echoCS algorithmFOCUSS algorithmNon-EPI sequencesMagnetic fieldSampling patternHigh-resolution functional magnetic resonance imagingFunctional magnetic resonance imagingField inhomogeneityGRE-EPIImage distortionSteady-state free precessionExperimental resultsTemporal resolutionAlgorithmFree precessionSpoiled gradient echoPhysiological and Functional Magnetic Resonance Imaging Using Balanced Steady-state Free Precession
Park S, Han P, Choi S. Physiological and Functional Magnetic Resonance Imaging Using Balanced Steady-state Free Precession. Korean Journal Of Radiology 2015, 16: 550-559. PMID: 25995684, PMCID: PMC4435985, DOI: 10.3348/kjr.2015.16.3.550.Peer-Reviewed Original ResearchInvestigation of Inter-Slice Magnetization Transfer Effects as a New Method for MTR Imaging of the Human Brain
Barker J, Han P, Choi S, Bae K, Park S. Investigation of Inter-Slice Magnetization Transfer Effects as a New Method for MTR Imaging of the Human Brain. PLOS ONE 2015, 10: e0117101. PMID: 25664938, PMCID: PMC4321840, DOI: 10.1371/journal.pone.0117101.Peer-Reviewed Original ResearchConceptsBalanced steady-state free precessionFlip angleMagnetization transferMagnetization transfer effectsSteady-state free precessionSaturation pulseModel of MTFree precessionMT-weightedAcquisition parametersMT effectMT ratioDelay timePrecessionMTR imagesHigh SNRInterslicePE stepsMagnetizationFlip
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply