2023
Objective Assessment of the Bias Introduced by Baseline Signals in XAI Attribution Methods
Dolci G, Cruciani F, Galazzo I, Calhoun V, Menegaz G. Objective Assessment of the Bias Introduced by Baseline Signals in XAI Attribution Methods. 2023, 00: 266-271. DOI: 10.1109/metroxraine58569.2023.10405708.Peer-Reviewed Original ResearchAttribute valuesMulti-channel architectureMulti-dimensional dataIntegrated Gradients methodDeep networksBaseline signalGradient methodMulti-ModalMagnetic resonance imaging volumesPost-hoc methodAttribution methodsAttribute mapsImage volumesAssociation studiesReference baselineXAICNNAttributesAlzheimer's disease patientsUsersBaseline
2016
DC artifact correction for arbitrary phase-cycling sequence
Han P, Park H, Park S. DC artifact correction for arbitrary phase-cycling sequence. Magnetic Resonance Imaging 2016, 38: 21-26. PMID: 27998747, DOI: 10.1016/j.mri.2016.12.015.Peer-Reviewed Original ResearchHigh‐resolution 1H‐MRSI of the brain using short‐TE SPICE
Ma C, Lam F, Ning Q, Johnson C, Liang Z. High‐resolution 1H‐MRSI of the brain using short‐TE SPICE. Magnetic Resonance In Medicine 2016, 77: 467-479. PMID: 26841000, PMCID: PMC5493212, DOI: 10.1002/mrm.26130.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioHigh-resolution spectroscopic imagingSpatiospectral correlationSpectroscopic imagingIn-plane resolutionSubspace-based techniquesAccelerated data acquisitionSignal processing algorithmsMetabolite signalsIn-planeProcessing algorithmsNuisance signalsLipid signalingBaseline signalDatasetData acquisitionProperties of water
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply