2024
TSC-100 and TSC-101 Demonstrate the Potential to Reduce Relapse Rates and Increase Relapse-Free Survival in Patients with AML, ALL, or MDS Undergoing Allogeneic HCT with Reduced Intensity Conditioning (RIC): Preliminary Results from the Phase 1 Alloha Trial
Al Malki M, Keyzner A, Popat U, Chen Y, Suh H, Jain T, Solh M, Snow A, Gill S, Gowda L, Uberti J, Buonomo E, Wang Y, Nabilsi N, White T, Nguyen C, Murray J, MacBeath G, Louis C, Chattopadhyay S, Matzko M, Reshef R. TSC-100 and TSC-101 Demonstrate the Potential to Reduce Relapse Rates and Increase Relapse-Free Survival in Patients with AML, ALL, or MDS Undergoing Allogeneic HCT with Reduced Intensity Conditioning (RIC): Preliminary Results from the Phase 1 Alloha Trial. Blood 2024, 144: 924. DOI: 10.1182/blood-2024-201526.Peer-Reviewed Original ResearchReduced intensity conditioningRelapse-free survivalPost-HCTDonor chimerismTreatment armsFollow-upControl armMalignant lineagesGrade 2-4 acute graft-versus-host diseaseT cell receptor-engineered T cellsControl subjectsIncreased relapse-free survivalGraft-versus-host diseaseMedian time to relapseControl arm subjectsNon-relapse deathPost-HCT MRDComplete donor chimerismDonor-derived cellsEngineered T cellsMedian Follow-UpTime to relapseCD3+ cellsPhase 1 studyARMS subjects
2020
Chemical mutagenesis of a GPCR ligand: Detoxifying “inflammo-attraction” to direct therapeutic stem cell migration
Lee J, Zhang R, Yan M, Duggineni S, Wakeman D, Niles W, Feng Y, Chen J, Hamblin M, Han E, Gonzalez R, Fang X, Zhu Y, Wang J, Xu Y, Wenger D, Seyfried T, An J, Sidman R, Huang Z, Snyder E. Chemical mutagenesis of a GPCR ligand: Detoxifying “inflammo-attraction” to direct therapeutic stem cell migration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 31177-31188. PMID: 33219123, PMCID: PMC7733796, DOI: 10.1073/pnas.1911444117.Peer-Reviewed Original ResearchConceptsNeural stem cellsCXCR4 agonistPrototypical neurodegenerative diseaseDonor-derived cellsStem cellsCerebral cortexCNS injuryInflammatory chemokinesHost inflammationUndesirable inflammationCXCL-12Mouse modelTherapeutic impactChemokine CXCL12Stem cell propertiesCell engagementNeurodegenerative diseasesStem cell migrationNSC migrationAgonistsSynthetic functionInflammationChemokinesFundamental stem cell propertiesCXCL12
2004
Bone Marrow-Derived Cells Contribute to Epithelial Engraftment during Wound Healing
Borue X, Lee S, Grove J, Herzog EL, Harris R, Diflo T, Glusac E, Hyman K, Theise ND, Krause DS. Bone Marrow-Derived Cells Contribute to Epithelial Engraftment during Wound Healing. American Journal Of Pathology 2004, 165: 1767-1772. PMID: 15509544, PMCID: PMC1618655, DOI: 10.1016/s0002-9440(10)63431-1.Peer-Reviewed Original ResearchConceptsBone marrow-derived cellsEpithelial cellsMarrow-derived epithelial cellsEngraftment of BMDCsDonor-derived cellsMarrow-derived cellsWound healingDegree of engraftmentLevel of engraftmentAbsence of injuryEarly wound healingFemale miceBone marrowCytokeratin 5Cre-lox systemEngraftmentSkin damageWound edgeKeratinocytesInjuryWound siteTransit-amplifying cellsStem cellsEpidermal stem cellsRecent findingsDonor APCs are required for maximal GVHD but not for GVL
Matte CC, Liu J, Cormier J, Anderson BE, Athanasiadis I, Jain D, McNiff J, Shlomchik WD. Donor APCs are required for maximal GVHD but not for GVL. Nature Medicine 2004, 10: 987-992. PMID: 15286785, DOI: 10.1038/nm1089.Peer-Reviewed Original ResearchConceptsDonor antigen-presenting cellsAntigen-presenting cellsCD8 cellsMouse modelDonor major histocompatibility complex (MHC) class IBone marrowDonor-derived antigen-presenting cellsChronic phase chronic myelogenous leukemiaHematopoietic antigen-presenting cellsRecipient antigen-presenting cellsHost antigen-presenting cellsMajor histocompatibility complex class IAlloreactive CD8 cellsRecipients of MHCHistocompatibility complex class IDonor-derived cellsMinor histocompatibility antigensChronic myelogenous leukemiaDeficient bone marrowComplex class IHost diseaseGVHDHistocompatibility antigensMyelogenous leukemiaInitial priming
2003
Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects
Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 8407-8411. PMID: 12815096, PMCID: PMC166242, DOI: 10.1073/pnas.1432929100.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBleomycinBone Marrow TransplantationCollagenDrug ResistanceEnzyme InductionFemaleFibrosisGene Expression RegulationGraft SurvivalHydroxyprolineIn Situ Hybridization, FluorescenceLungMaleMatrix MetalloproteinasesMesodermMiceMice, Inbred BALB CMice, Inbred C57BLOsteopontinPolymerase Chain ReactionPulmonary FibrosisRNA, MessengerSialoglycoproteinsStem Cell TransplantationTransplantation, HeterotopicConceptsLung tissueMesenchymal stem cellsCollagen depositionResistant BALB/c miceMesenchymal stem cell engraftmentBALB/c miceTotal lung DNAControl-treated miceDonor-derived cellsWhole lung tissueStem cell engraftmentType II epithelial cellsTransplant recipientsC57BL/6 recipientsMSC administrationEpithelium-like morphologyFibrotic effectsIntracranial transplantationMSC transplantationC miceBleomycin exposureLung DNAMurine bone marrowReal-time PCRBone marrow
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply