2020
Novel aspects of glutamine synthetase in ammonia homeostasis
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochemistry International 2020, 140: 104809. PMID: 32758585, DOI: 10.1016/j.neuint.2020.104809.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidSevere liver diseaseElevated blood ammoniaAmmonia homeostasisInhibitory neurotransmitters glutamateUrea cycleEffects of hyperammonemiaPotassium bufferingNeurological sequelaeBrain edemaLiver diseaseBrain pathophysiologyUrea cycle pathwayBlood ammoniaExtrahepatic tissuesNeurotransmitter glutamateAmmonia clearanceAminobutyric acidComplete urea cycleCycle pathwayTwo-thirdsGlutamine synthetaseRecent studiesHomeostasisBody ammonia
1991
The Biosynthesis of Endothelium-Derived Relaxing Factor by Endothelial Cells as a Means of Removing Excess Nitrogen
Hecker M, Sessa W, Mitchell J, Änggård E, Vane J. The Biosynthesis of Endothelium-Derived Relaxing Factor by Endothelial Cells as a Means of Removing Excess Nitrogen. Journal Of Cardiovascular Pharmacology 1991, 17: s19-s24. DOI: 10.1097/00005344-199117003-00005.Peer-Reviewed Original ResearchCultured endothelial cellsBiosynthesis of EDRFRelease of EDRFEndothelial cellsNitric oxideKrebs solutionComplete urea cycleImportant regulatory factorCellular regulationExcess nitrogenVariety of cellsRegulatory factorsBiosynthesisPhysiologic buffer solutionFlow-induced releaseRelaxing factorsCytotoxic macrophagesIntracellular sourcesBrain synaptosomesEDRF biosynthesisEDRFIntracellular concentrationTransient riseCalcium ionophoreGln
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply