2018
TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells
Gülden E, Chao C, Tai N, Pearson JA, Peng J, Majewska-Szczepanik M, Zhou Z, Wong FS, Wen L. TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. Journal Of Autoimmunity 2018, 93: 57-65. PMID: 29960834, PMCID: PMC6108920, DOI: 10.1016/j.jaut.2018.06.003.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAdoptive TransferAnimalsBacteroidetesBurkholderialesCell ProliferationDendritic CellsDiabetes Mellitus, ExperimentalDisease SusceptibilityFemaleFirmicutesGastrointestinal MicrobiomeGene Expression RegulationLymphocyte ActivationMiceMice, Inbred NODMice, KnockoutMyeloid Differentiation Factor 88Signal TransductionT-LymphocytesToll-Like Receptor 3Toll-Like Receptor 4ConceptsWT NOD miceNOD miceType 1 diabetesGut microbiotaDiabetes developmentDendritic cellsCell activationNon-obese diabetic (NOD) mouse modelMyeloid differentiation primary response gene 88Wild-type NOD miceNon-obese diabetic (NOD) miceToll-like receptor signalingDiabetes susceptibilityStrong inflammatory immune responseDevelopment of diabetesInflammatory immune responseDiabetic mouse modelAdapter-inducing interferonImmune cell activationT cell activationTRIF deficiencyAdaptor protein downstreamFurther immunological analysisHuman T1D.T1D developmentTopical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner
Gopinath S, Kim MV, Rakib T, Wong PW, van Zandt M, Barry NA, Kaisho T, Goodman AL, Iwasaki A. Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nature Microbiology 2018, 3: 611-621. PMID: 29632368, PMCID: PMC5918160, DOI: 10.1038/s41564-018-0138-2.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, TopicalAminoglycosidesAnimalsAnti-Bacterial AgentsDisease Models, AnimalGene Expression ProfilingGene Expression RegulationGerm-Free LifeHumansInfluenza A virusMiceMicrobiotaOligonucleotide Array Sequence AnalysisSimplexvirusToll-Like Receptor 3Transcription FactorsVirus DiseasesVirus ReplicationZika VirusConceptsToll-like receptor 3Aminoglycoside treatmentInterferon-stimulated genesViral infectionReceptor 3ISG inductionAminoglycoside antibioticsMicrobiota-independent mannerGerm-free miceAdapter-inducing interferonInterferon regulatory factor 3Herpes simplex virusTopical mucosal applicationRegulatory factor 3Dendritic cellsAntibiotic useAntiviral effectAminoglycoside applicationHost resistanceSimplex virusAntiviral resistanceVaginal mucosaMarked upregulationMucosal applicationTopical application
2015
Analysis of gene–environment interactions in postnatal development of the mammalian intestine
Rakoff-Nahoum S, Kong Y, Kleinstein SH, Subramanian S, Ahern PP, Gordon JI, Medzhitov R. Analysis of gene–environment interactions in postnatal development of the mammalian intestine. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 1929-1936. PMID: 25691701, PMCID: PMC4343130, DOI: 10.1073/pnas.1424886112.Peer-Reviewed Original ResearchConceptsTLR/IL-1RToll-like receptorsPostnatal developmentIntestinal gene expressionMyeloid differentiation factor 88Domain-containing adapter-inducing interferonDifferentiation factor 88Adapter-inducing interferonMast cell homeostasisIntestinal ontogenyReceptor family membersFactor 88WT miceGene expression programsSmooth muscle developmentGene-environment interactionsIL-1RIntestinal physiologyImmune systemKnockout littermatesPostnatal transitionMicrobial colonizationIntestinal contentsGene expressionPubertal maturation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply