2024
Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2
Subbotina E, Souza L, Zimmerman J, Anastas P. Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2. Nature Communications 2024, 15: 5892. PMID: 39003256, PMCID: PMC11246530, DOI: 10.1038/s41467-024-49812-x.Peer-Reviewed Original ResearchButene-2Bio-based carbon contentSource of renewable aromaticsGlass transition temperatureSynthetic utilityOlefin metathesisReductive catalytic fractionationBio-based carbonCatalyst loadingTarget monomersMild conditionsHydrogen pressureThermal stabilityRenewable aromaticsLoss of functionTransition temperatureCatalytic fractionationLignin depolymerizationCatalytic upgradingConvert ligninMonomerUpgrading methodsBisphenolHigh temperatureOrganobase-Catalyzed Ring-Opening Copolymerization of Cyclic Anhydrides and Oxetanes: Establishment and Application in Block Copolymer Synthesis
Ota I, Suzuki R, Mizukami Y, Xia X, Tajima K, Yamamoto T, Li F, Isono T, Satoh T. Organobase-Catalyzed Ring-Opening Copolymerization of Cyclic Anhydrides and Oxetanes: Establishment and Application in Block Copolymer Synthesis. Macromolecules 2024, 57: 3741-3750. DOI: 10.1021/acs.macromol.3c02483.Peer-Reviewed Original ResearchRing-opening copolymerizationCyclic anhydridesTrimethylene oxideCyclic ethersRing-opening copolymerization of phthalic anhydridePhthalic anhydrideRing-opening polymerization of trimethylene carbonatePolymerization of trimethylene carbonatePolymerization processBlock copolymer synthesisRing-opening polymerizationSelf-switchable polymerizationPredictable molecular weightGlass transition temperatureControlled/living natureSynthesized polyestersCopolymer synthesisBlock copolymersOxetaneAnhydridePolymer materialsFunctional groupsL-lactidePolymerizationTransition temperature
2021
Structure, thermotropic phase behavior and membrane interaction of N-acyl-β-alaninols. Homologs of stress-combating N-acylethanolamines
Sivaramakrishna D, Choudhury S, Cheppali S, Swamy M. Structure, thermotropic phase behavior and membrane interaction of N-acyl-β-alaninols. Homologs of stress-combating N-acylethanolamines. Chemistry And Physics Of Lipids 2021, 236: 105056. PMID: 33631126, DOI: 10.1016/j.chemphyslip.2021.105056.Peer-Reviewed Original ResearchConceptsC–HO hydrogen bondsSupramolecular organizationThermotropic phase behaviorOdd acyl chainsP21/c space groupTilted bilayer structureOdd-even alterationPowder XRD studiesPhase behaviorC–HOO–HOMonoclinic systemAcyl chainsAmide moietySpace groupHydrogen bondsCrystal structureXRD studiesTransition entropyChain lengthD-spacingHead groupsTransition enthalpyTransition temperatureDSC studies
2018
Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible Plasticizer
Erythropel HC, Börmann A, Nicell JA, Leask RL, Maric M. Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible Plasticizer. Polymers 2018, 10: 646. PMID: 30966680, PMCID: PMC6404088, DOI: 10.3390/polym10060646.Peer-Reviewed Original ResearchGreen plasticizersTorsional modulusGlass transition temperatureMechanical propertiesEffective plasticizationSurface hardnessMaximum stressReversible plasticizerPVC/Apparent modulusTemperature sweepProcessing aidElevated temperaturesModulusDifferential scanning calorimetryBlendsPlasticizerDiol lengthCommercial plasticizersTransition temperatureScanning calorimetryTemperaturePlasticizer propertiesPVCPlasticizing effectiveness
2013
Computational studies of the glass-forming ability of model bulk metallic glasses
Zhang K, Wang M, Papanikolaou S, Liu Y, Schroers J, Shattuck MD, O'Hern CS. Computational studies of the glass-forming ability of model bulk metallic glasses. The Journal Of Chemical Physics 2013, 139: 124503. PMID: 24089782, DOI: 10.1063/1.4821637.Peer-Reviewed Original ResearchBulk metallic glassGlass-forming abilityMetallic glassesTypical bulk metallic glassesLiquid metal alloysCritical cooling rateBMGs increasesGlass transition temperatureParticle size differencesAtomic size ratioMetal alloysCooling rateNegative heatKey parametersBinary LJ mixturesGlass formationTransition temperatureOrders of magnitudeSize ratioHeatGlass-forming mixturesGlassSimulationsDynamics simulationsMolecular dynamics simulations
2003
Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys
Ponnambalam V, Poon S, Shiflet G, Keppens V, Taylor R, Petculescu G. Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Applied Physics Letters 2003, 83: 1131-1133. DOI: 10.1063/1.1599636.Peer-Reviewed Original ResearchSteel alloysIron-based bulk metallic glassesIron-based amorphous metalSuper-austenitic steelsSuperior mechanical strengthBulk metallic glassInjection castingAustenitic steelMechanical strengthPresent alloyElastic modulusMetallic glassesAlloyAmorphous phaseAmorphous metalsLiquidus temperatureTransition temperatureAmbient temperatureAmorphous samplesMagnetic transition temperatureTemperatureSteelCastingModulusAtomistic factors
2002
Synthesis and Properties of High-Manganese Iron-Based Bulk Amorphous Metals as Non-Ferromagnetic Amorphous Steel Alloys
Joseph S, Shiflet G, Ponnambalam V, Keppens V, Taylor R, Petculescu G. Synthesis and Properties of High-Manganese Iron-Based Bulk Amorphous Metals as Non-Ferromagnetic Amorphous Steel Alloys. MRS Advances 2002, 754: 12. DOI: 10.1557/proc-754-cc1.2.Peer-Reviewed Original ResearchSteel alloysAmorphous metalsHigh strength steel alloysSuper-austenitic steelsCorrosion-resistant materialsBest glass-forming alloysTensile yield strengthBulk amorphous metalAmorphous Fe-alloyGlass-forming alloysTransition temperatureInjection castingYield strengthGlass transition temperatureVickers hardnessElastic modulusLiquid regionFe alloyAlloyProper alloyingLiquidus temperatureManganese ironAmbient temperatureAmorphous samplesTemperature
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply