2024
Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2
Subbotina E, Souza L, Zimmerman J, Anastas P. Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2. Nature Communications 2024, 15: 5892. PMID: 39003256, PMCID: PMC11246530, DOI: 10.1038/s41467-024-49812-x.Peer-Reviewed Original ResearchButene-2Bio-based carbon contentSource of renewable aromaticsGlass transition temperatureSynthetic utilityOlefin metathesisReductive catalytic fractionationBio-based carbonCatalyst loadingTarget monomersMild conditionsHydrogen pressureThermal stabilityRenewable aromaticsLoss of functionTransition temperatureCatalytic fractionationLignin depolymerizationCatalytic upgradingConvert ligninMonomerUpgrading methodsBisphenolHigh temperatureChemically Recyclable Unnatural (1→6)-Polysaccharides from Cellulose-Derived Levoglucosenone and Dihydrolevoglucosenone
Mizukami Y, Kakehi Y, Li F, Yamamoto T, Tajima K, Isono T, Satoh T. Chemically Recyclable Unnatural (1→6)-Polysaccharides from Cellulose-Derived Levoglucosenone and Dihydrolevoglucosenone. ACS Macro Letters 2024, 13: 252-259. PMID: 38334272, DOI: 10.1021/acsmacrolett.3c00720.Peer-Reviewed Original ResearchClosed-loop chemical recyclingTransparent self-standing filmsCationic ring-opening polymerizationRing-opening polymerizationSelf-standing filmsUnnatural polysaccharidesSubstituent patternChemical spaceAcid catalystMonomer synthesisSynthetic complexesChemical synthesisPolymer materialsLevoglucosenoneThermal stabilityPolymerization kineticsChemical recyclingAmbient conditionsCellulose-derivativesAmorphous solidsDihydrolevoglucosenonePolymerizationMonomerPolymerMaterial properties
2020
Ionic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage
Yazdani M, Etula J, Zimmerman J, Seppälä A. Ionic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage. Green Chemistry 2020, 22: 5447-5462. DOI: 10.1039/d0gc01427c.Peer-Reviewed Original ResearchX-ray diffractionDifferential scanning calorimetryPolyvinyl alcoholThermogravimetric analysisPhase change materialElectron microscopy-energy dispersive X-ray spectroscopyCross-linked polyvinyl alcoholStrong intermolecular interactionsDispersive X-ray spectroscopyUnique propertiesCross-linked matrixMaterials unique propertiesX-ray spectroscopyHydrogen bondingIntermolecular interactionsCross linkerOptical microscopyPolymeric matrixUndesired crystallizationFourier transformScanning calorimetryNew sustainable materialsChange materialsPVA matrixThermal stability
2016
Efficient long-term cryopreservation of pluripotent stem cells at −80 °C
Yuan Y, Yang Y, Tian Y, Park J, Dai A, Roberts R, Liu Y, Han X. Efficient long-term cryopreservation of pluripotent stem cells at −80 °C. Scientific Reports 2016, 6: 34476. PMID: 27694817, PMCID: PMC5046093, DOI: 10.1038/srep34476.Peer-Reviewed Original Research
2011
Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy=2,2′:6′,2″-terpyridine) in aqueous solution
Zhang F, Cady C, Brudvig G, Hou H. Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy=2,2′:6′,2″-terpyridine) in aqueous solution. Inorganica Chimica Acta 2011, 366: 128-133. DOI: 10.1016/j.ica.2010.10.021.Peer-Reviewed Original ResearchOxo dimerMn4Ca clusterAqueous solutionThermal stabilitySolar fuel productionOxygen evolution activityFirst fast stepMn valence changeAtomic absorption spectroscopyCatalytic materialsElemental analysisPS IIManganese dioxideAbsorption spectroscopyConversion of waterNovel MnDimer compoundsMn valenceSlow stepFast stepSolid MnThermal decompositionValence changeUnique materialFuel production
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply