2021
14 The Adrenal Cortex and Its Disorders
Miller W, Flück C, Breault D, Feldman B. 14 The Adrenal Cortex and Its Disorders. 2021, 425-490. DOI: 10.1016/b978-0-323-62520-3.00014-2.Peer-Reviewed Original ResearchAdrenocorticotropic hormoneSteroid measurementsDeficiency statesLong-term glucocorticoid treatmentGenetic disordersEvaluation of adrenal functionHormone productionAssociated with genetic disordersSteroid hormone productionSteroidogenic cellsPrincipal mineralocorticoidAdrenal tumorsAdrenal insufficiencyCushing's syndromeAdrenal disordersSteroid excessConn's syndromeTumor originGlucocorticoid treatmentMineralocorticoid excessAdrenal functionGlucocorticoid excessAddison's diseaseGenetic causeAdrenal cortex
2020
Emerging roles for noncoding RNAs in female sex steroids and reproductive disease
Zhang R, Wesevich V, Chen Z, Zhang D, Kallen AN. Emerging roles for noncoding RNAs in female sex steroids and reproductive disease. Molecular And Cellular Endocrinology 2020, 518: 110875. PMID: 32668269, PMCID: PMC7609472, DOI: 10.1016/j.mce.2020.110875.Peer-Reviewed Original ResearchConceptsRole of ncRNAsSteroid hormone productionFemale gametogenesisNcRNA expressionRegulatory networksDNA blueprintNoncoding RNAsFunctional RNAsCentral dogmaNcRNAsBiological processesMolecular biologyRNAMessenger RNAParticular disease stateHormone productionSex steroid hormone productionCritical roleProteinTherapeutic targetReproductive pathologiesPotential diagnostic markerPolycystic ovary syndromeReproductive diseasesFemale sex steroids
2008
Inhibitory Effect of Tributyltin on Expression of Steroidogenic Enzymes in Mouse Testis
Kim S, Kim J, Han J, Yoon Y. Inhibitory Effect of Tributyltin on Expression of Steroidogenic Enzymes in Mouse Testis. International Journal Of Toxicology 2008, 27: 175-182. PMID: 18404541, DOI: 10.1080/10915810801977906.Peer-Reviewed Original ResearchConceptsInterstitial Leydig cellsSteroidogenic enzymesLeydig cellsImmature male miceSerum testosterone concentrationsTesticular developmentInhibition of steroidogenesisCholesterol side-chain cleavage enzymeSide-chain cleavage enzymeSteroid hormone productionGerm cellsTesticular germ cellsApoptotic germ cellsOral gavageMale miceSingle administrationTestosterone concentrationsHormone productionInhibitory effectSeminiferous tubulesAdverse effectsInduced apoptosisTBT exposureAcute toxicityCleavage enzyme
1996
Autologous granulosa cell coculture demonstrates zygote suppression of granulosa cell steroidogenesis**Presented in part at the 51st Annual Meeting of the American Society for Reproductive Medicine. Seattle, Washington, October 7 to 12, 1995.††Supported in part by Physician Scientist Award (AG00566 [D.B.S.] and R01HD31894 [A.L.S.]) from the National Institutes of Health, National Institute on Aging, Bethesda, Maryland.
Seifer D, Freeman M, Gardiner A, Hill G, Schneyer A, Vanderhyden B. Autologous granulosa cell coculture demonstrates zygote suppression of granulosa cell steroidogenesis**Presented in part at the 51st Annual Meeting of the American Society for Reproductive Medicine. Seattle, Washington, October 7 to 12, 1995.††Supported in part by Physician Scientist Award (AG00566 [D.B.S.] and R01HD31894 [A.L.S.]) from the National Institutes of Health, National Institute on Aging, Bethesda, Maryland. Fertility And Sterility 1996, 66: 425-429. PMID: 8751742, DOI: 10.1016/s0015-0282(16)58513-6.Peer-Reviewed Original ResearchConceptsLuteinized granulosa cellsGranulosa cellsStandard IVF-ET treatment cycleIVF-ET treatment cyclesTwo-pronuclear embryosGranulosa cell steroidogenesisTwo-pronuclear zygotesNational InstituteVitro Fertilization UnitProduction of E2Steroid hormone productionPituitary desensitizationOvarian stimulationFollicular aspiratesCell steroidogenesisFertilization unitTreatment cyclesHormone productionCell coculturesReproductive medicineP productionAmerican SocietyAcademic research environmentE2Human embryos
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply