2024
Diffusion-based Bayesian posterior distribution prediction of kinetic parameters in dynamic PET
Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, Fakhri G, Ma C, Ouyang J. Diffusion-based Bayesian posterior distribution prediction of kinetic parameters in dynamic PET. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657955.Peer-Reviewed Original ResearchConditional variational autoencoderEfficient deep learning-based approachMarkov chain Monte CarloDenoising diffusion probabilistic modelDeep learning-based approachDiffusion probabilistic modelLearning-based approachApproximate posterior distributionPosterior distributionVariational autoencoderHeavy computationTau protein aggregationBayesian inferenceProbabilistic modelData-drivenStudy molecular processesBayesian posterior distributionProtein aggregationMetropolis-Hastings Markov chain Monte CarloMolecular processesAlzheimer's diseaseNeurodegenerative diseasesKinetic parametersEstimate posterior distributionsAutoencoder
2022
Posterior estimation using deep learning: a simulation study of compartmental modeling in dynamic positron emission tomography
Liu X, Marin T, Amal T, Woo J, Fakhri G, Ouyang J. Posterior estimation using deep learning: a simulation study of compartmental modeling in dynamic positron emission tomography. Medical Physics 2022, 50: 1539-1548. PMID: 36331429, PMCID: PMC10087283, DOI: 10.1002/mp.16078.Peer-Reviewed Original ResearchConceptsConditional variational auto-encoderDeep learning approachNeural networkDeep learningMarkov chain Monte CarloVariational Bayesian inference frameworkLearning approachDeep learning-based approachVariational auto-encoderDeep neural networksLearning-based approachDynamic brain PET imagingPosterior distributionEstimate posterior distributionsBayesian inference frameworkAuto-encoderMedical imagesInference frameworkNetworkSimulation studyBrain PET imagingLearningPosterior estimatesInferior performanceImages