2022
Adaptive data-driven motion detection and optimized correction for brain PET
Revilla EM, Gallezot JD, Naganawa M, Toyonaga T, Fontaine K, Mulnix T, Onofrey JA, Carson RE, Lu Y. Adaptive data-driven motion detection and optimized correction for brain PET. NeuroImage 2022, 252: 119031. PMID: 35257856, PMCID: PMC9206767, DOI: 10.1016/j.neuroimage.2022.119031.Peer-Reviewed Original ResearchConceptsDetection algorithmMotion correction methodMotion tracking informationExternal motion tracking devicesMotion detection algorithmMotion tracking methodImage registration algorithmHead motionReal human datasetsData-driven methodUser-defined parametersImage quality degradationMotion tracking deviceMultiple usersDynamic datasetsTracking informationManual interventionRegistration algorithmMotion detectionTracking methodComparable performanceAlgorithmQuality degradationHuman datasetsTracking device
2020
First-in-Human Assessment of 11C-LSN3172176, an M1 Muscarinic Acetylcholine Receptor PET Radiotracer
Naganawa M, Nabulsi N, Henry S, Matuskey D, Lin SF, Slieker L, Schwarz AJ, Kant N, Jesudason C, Ruley K, Navarro A, Gao H, Ropchan J, Labaree D, Carson RE, Huang Y. First-in-Human Assessment of 11C-LSN3172176, an M1 Muscarinic Acetylcholine Receptor PET Radiotracer. Journal Of Nuclear Medicine 2020, 62: 553-560. PMID: 32859711, PMCID: PMC8049371, DOI: 10.2967/jnumed.120.246967.Peer-Reviewed Original ResearchConceptsSimplified reference tissue modelM1 receptorsHealthy subjectsMuscarinic acetylcholine receptor subtype M1Distribution volumePET radiotracersAbsolute test-retest variabilityExcellent test-retest reproducibilityReference tissue model 2Total distribution volumeSuitable reference regionTest-retest reproducibilityTest-retest variabilityReference regionTest-retest protocolNondisplaceable distribution volumeReference tissue modelTest-retest studySubtypes M1Preclinical studiesRegional time-activity curvesAcetylcholine concentrationHuman studiesReceptor occupancyTime-activity curvesKinetic Modeling and Test–Retest Reproducibility of 11C-EKAP and 11C-FEKAP, Novel Agonist Radiotracers for PET Imaging of the κ-Opioid Receptor in Humans
Naganawa M, Li S, Nabulsi N, Lin SF, Labaree D, Ropchan J, Gao H, Mei M, Henry S, Matuskey D, Carson RE, Huang Y. Kinetic Modeling and Test–Retest Reproducibility of 11C-EKAP and 11C-FEKAP, Novel Agonist Radiotracers for PET Imaging of the κ-Opioid Receptor in Humans. Journal Of Nuclear Medicine 2020, 61: 1636-1642. PMID: 32169917, PMCID: PMC9364890, DOI: 10.2967/jnumed.119.227694.Peer-Reviewed Original Research
2019
In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease
Toyonaga T, Smith LM, Finnema SJ, Gallezot JD, Naganawa M, Bini J, Mulnix T, Cai Z, Ropchan J, Huang Y, Strittmatter SM, Carson RE. In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease. Journal Of Nuclear Medicine 2019, 60: 1780-1786. PMID: 31101744, PMCID: PMC6894376, DOI: 10.2967/jnumed.118.223867.Peer-Reviewed Original ResearchConceptsAPP/PS1 micePS1 miceAlzheimer's diseaseWT miceSynaptic densityC-UCBDrug washoutTreatment effectsPresenilin 1 (PS1) double transgenic miceHippocampal synaptic densityAPP/PS1Double transgenic miceEnd of treatmentWild-type miceAmyloid precursor proteinEarly Alzheimer's diseaseSignificant differencesSUVR-1New PET tracersMild cognitive impairmentAD miceSynaptic deficitsOral gavageAD treatmentHealthy subjects
2016
Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of 18F-FP-DTBZ in baboons
Naganawa M, Lin SF, Lim K, Labaree D, Ropchan J, Harris P, Huang Y, Ichise M, Carson RE, Cline GW. Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of 18F-FP-DTBZ in baboons. Nuclear Medicine And Biology 2016, 43: 743-751. PMID: 27673755, PMCID: PMC5248981, DOI: 10.1016/j.nucmedbio.2016.08.018.Peer-Reviewed Original ResearchConceptsRenal cortexPositron emission tomographyInactive enantiomerRadiometabolite fractionΒ-cell massHuman β-cell massNon-displaceable bindingEx vivo studyF-FPLow inter-subject variabilityPET scansDTBZ bindingSpleen uptakeDistribution volumeEmission tomographySpleenPancreasDTBZCortexVivo studiesTissue samplesInter-subject variabilityHigh uptakePET signalRadiometabolitesComparative evaluation of two glycine transporter 1 radiotracers [11C]GSK931145 and [18F]MK‐6577 in baboons
Zheng MQ, Lin SF, Holden D, Naganawa M, Ropchan JR, Najafzaden S, Kapinos M, Tabriz M, Carson RE, Hamill TG, Huang Y. Comparative evaluation of two glycine transporter 1 radiotracers [11C]GSK931145 and [18F]MK‐6577 in baboons. Synapse 2016, 70: 112-120. PMID: 26671330, DOI: 10.1002/syn.21879.Peer-Reviewed Original ResearchAnimalsBenzamidesBrainBrain MappingCarbon RadioisotopesChromatography, High Pressure LiquidDrug Evaluation, PreclinicalFemaleGlycine AgentsGlycine Plasma Membrane Transport ProteinsKineticsLinear ModelsMagnetic Resonance ImagingMolecular StructurePapioPositron-Emission TomographyRadiopharmaceuticalsSulfonamides
2014
Kinetic Modeling of 11C-LY2795050, A Novel Antagonist Radiotracer for PET Imaging of the Kappa Opioid Receptor in Humans
Naganawa M, Zheng MQ, Nabulsi N, Tomasi G, Henry S, Lin SF, Ropchan J, Labaree D, Tauscher J, Neumeister A, Carson RE, Huang Y. Kinetic Modeling of 11C-LY2795050, A Novel Antagonist Radiotracer for PET Imaging of the Kappa Opioid Receptor in Humans. Cerebrovascular And Brain Metabolism Reviews 2014, 34: 1818-1825. PMID: 25182664, PMCID: PMC4269759, DOI: 10.1038/jcbfm.2014.150.Peer-Reviewed Original ResearchConceptsKappa-opioid receptorsMultilinear analysis 1Opioid receptorsNovel kappa opioid receptorDistribution volumePositron emission tomography (PET) imagingEmission Tomography ImagingLow intersubject variabilityTwo-tissue compartment modelAntagonist radiotracersOral naltrexoneNondisplaceable distribution volumeBaseline scanLY2795050Human studiesArterial input functionPET imagingTomography imagingIntersubject variabilityNaltrexoneEvaluation of the agonist PET radioligand [11C]GR103545 to image kappa opioid receptor in humans: Kinetic model selection, test–retest reproducibility and receptor occupancy by the antagonist PF-04455242
Naganawa M, Jacobsen LK, Zheng MQ, Lin SF, Banerjee A, Byon W, Weinzimmer D, Tomasi G, Nabulsi N, Grimwood S, Badura LL, Carson RE, McCarthy TJ, Huang Y. Evaluation of the agonist PET radioligand [11C]GR103545 to image kappa opioid receptor in humans: Kinetic model selection, test–retest reproducibility and receptor occupancy by the antagonist PF-04455242. NeuroImage 2014, 99: 69-79. PMID: 24844744, PMCID: PMC4140089, DOI: 10.1016/j.neuroimage.2014.05.033.Peer-Reviewed Original ResearchConceptsKappa-opioid receptorsTest-retest reproducibilityTest-retest variabilityAbsolute test-retest variabilityPF-04455242Time-activity curvesIntra-class coefficientOpioid receptorsRegional time-activity curvesMetabolite-corrected arterial input functionHuman positron emission tomography studiesPositron emission tomography studySelective KOR antagonistEmission tomography studiesReceptor occupancy studiesSuitable reference regionHalf maximal inhibitory concentrationAgonist tracersRegional VTAgonist PET radioligandOral doseKOR antagonistsMaximal inhibitory concentrationOral administrationPreclinical models
2013
Tracer Kinetic Modeling of [11C]AFM, a New PET Imaging Agent for the Serotonin Transporter
Naganawa M, Nabulsi N, Planeta B, Gallezot JD, Lin SF, Najafzadeh S, Williams W, Ropchan J, Labaree D, Neumeister A, Huang Y, Carson RE. Tracer Kinetic Modeling of [11C]AFM, a New PET Imaging Agent for the Serotonin Transporter. Cerebrovascular And Brain Metabolism Reviews 2013, 33: 1886-1896. PMID: 23921898, PMCID: PMC3851894, DOI: 10.1038/jcbfm.2013.134.Peer-Reviewed Original ResearchConceptsPositron emission tomographySerotonin transporterReference tissue modelArterial input functionOne-tissue modelMultilinear reference tissue modelNew PET imaging agentTwo-tissue modelPET imaging agentHealthy human brainSuitable PET radioligandNew positron emission tomographySERT densityRegional time-activity curvesTime-activity curvesEmission tomography dataRegional bindingEmission tomographyPET radioligandRoutine useInterest analysisNoninvasive methodPositron emission tomography dataImaging agentHuman brain
2010
Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD)
Kawamura K, Naganawa M, Konno F, Yui J, Wakizaka H, Yamasaki T, Yanamoto K, Hatori A, Takei M, Yoshida Y, Sakaguchi K, Fukumura T, Kimura Y, Zhang MR. Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). Nuclear Medicine And Biology 2010, 37: 625-635. PMID: 20610167, DOI: 10.1016/j.nucmedbio.2010.02.013.Peer-Reviewed Original ResearchConceptsImidazoline receptorsI2-imidazoline receptorsDynamic PET scansRat brainParkinson's diseasePositron emission tomography (PET) probesPET scansAlzheimer's diseaseBrain regionsBrain tissueDistinct receptorsTissue dissectionPET studiesDiseaseHuntington's diseaseTributylstannyl precursorSmall-animal PETBrainReceptorsFirst imagingPET probeSignificant reductionRadioactivity levelsRatsInjection
2009
A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies
Ito H, Yokoi T, Ikoma Y, Shidahara M, Seki C, Naganawa M, Takahashi H, Takano H, Kimura Y, Ichise M, Suhara T. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. NeuroImage 2009, 49: 578-586. PMID: 19631754, DOI: 10.1016/j.neuroimage.2009.07.021.Peer-Reviewed Original Research
2008
PET kinetic analysis: error consideration of quantitative analysis in dynamic studies
Ikoma Y, Watabe H, Shidahara M, Naganawa M, Kimura Y. PET kinetic analysis: error consideration of quantitative analysis in dynamic studies. Annals Of Nuclear Medicine 2008, 22: 1-11. PMID: 18250982, DOI: 10.1007/s12149-007-0083-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2007
PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging
Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Annals Of Nuclear Medicine 2007, 21: 379. PMID: 17876550, DOI: 10.1007/s12149-007-0044-9.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsAlgorithmsAnimalsArtifactsBrain MappingCluster AnalysisComputer SimulationCoronary CirculationFourier AnalysisHumansImage EnhancementImage Interpretation, Computer-AssistedImage Processing, Computer-AssistedKineticsNonlinear DynamicsNuclear MedicinePositron-Emission TomographyRadiopharmaceuticalsSoftwareTime FactorsEvaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET
Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K. Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 2007, 61: 778-784. PMID: 17568431, DOI: 10.1002/syn.20423.Peer-Reviewed Original ResearchConceptsPositron emission tomographyPosterior putamenCaudate nucleusFrontal lobeHuman brainPromising PET ligandSelective A2AR antagonistNormal male subjectsMetabolite-corrected plasmaPosterior cingulate gyrusAdenosine A2A receptorsNormal human brainCerebral cortexA2AR antagonistCingulate gyrusArterial bloodOccipital lobeParkinson's diseaseTemporal lobePET scansA2A receptorsThree-compartment modelParietal lobePET ligandMale subjectsPET kinetic analysis —Pitfalls and a solution for the Logan plot
Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis —Pitfalls and a solution for the Logan plot. Annals Of Nuclear Medicine 2007, 21: 1-8. PMID: 17373330, DOI: 10.1007/bf03033993.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2006
Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography
Naganawa M, Kimura Y, Mishina M, Manabe Y, Chihara K, Oda K, Ishii K, Ishiwata K. Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography. European Journal Of Nuclear Medicine And Molecular Imaging 2006, 34: 679-687. PMID: 17171358, DOI: 10.1007/s00259-006-0294-0.Peer-Reviewed Original ResearchPET kinetic analysis—compartmental model
Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Annals Of Nuclear Medicine 2006, 20: 583. PMID: 17294668, DOI: 10.1007/bf02984655.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2005
MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG
Kimura Y, Naganawa M, Yamaguchi J, Takabayashi Y, Uchiyama A, Oda K, Ishii K, Ishiwata K. MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG. NeuroImage 2005, 29: 1203-1211. PMID: 16216532, DOI: 10.1016/j.neuroimage.2005.08.046.Peer-Reviewed Original ResearchAlgorithmsBlood GlucoseBrainBrain MappingComputer GraphicsComputer SimulationEnergy MetabolismFluorodeoxyglucose F18HumansImage Processing, Computer-AssistedImaging, Three-DimensionalKineticsLeast-Squares AnalysisNonlinear DynamicsPhantoms, ImagingPositron-Emission TomographyReproducibility of Results