2024
A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression
Lee W, Zhuo Y, Marin T, Han P, Chi D, Fakhri G, Ma C. A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2024 DOI: 10.58530/2024/0259.Peer-Reviewed Original ResearchDeep learning-based methodsLearning-based methodsU-Net structureSignal removalIn vivo MRSI dataNeural networkU-NetMRSI dataImage reconstructionSuperior performanceData processingRobust performanceHankel matrixNetworkNuisance signalsConventional methodsPerformanceMRSI signalsSignalMethodRemove nuisance signalsRemovalHankel
2021
Segmentation of Cardiac Structures via Successive Subspace Learning with Saab Transform from Cine MRI
Liu X, Xing F, Gaggin H, Wang W, Kuo C, Fakhri G, Woo J. Segmentation of Cardiac Structures via Successive Subspace Learning with Saab Transform from Cine MRI. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2021, 00: 3535-3538. PMID: 34892002, DOI: 10.1109/embc46164.2021.9629770.Peer-Reviewed Original ResearchConceptsConvolutional neural networkSegmentation of cardiac structuresSaab transformSubspace approximationAccurate segmentation of cardiac structuresDimension reductionConvolutional neural network modelConcatenation of featuresUnsupervised dimension reductionConditional random fieldPixel-wise classificationSupervised dimension reductionU-Net modelMachine learning modelsSubspace learningChannel-wiseSegmentation databaseSegmentation frameworkNeural networkU-NetEfficient segmentationAccurate segmentationLearning modelsCardiac MR imagesRandom field
2018
Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images
Gong K, Yang J, Kim K, Fakhri G, Seo Y, Li Q. Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Physics In Medicine And Biology 2018, 63: 125011. PMID: 29790857, PMCID: PMC6031313, DOI: 10.1088/1361-6560/aac763.Peer-Reviewed Original ResearchConceptsU-Net structureU-NetModified U-net structureAttenuation correctionDeep neural network methodBrain PET imagingPET attenuationDeep neural networksPatient data setsAttenuation coefficientDixon-based methodNeural network methodData setsConvolution moduleNetwork inputNeural networkDixon MRPET/MR hybrid systemImage reconstructionPET imagingNetwork methodNetworkNetwork approachNetwork structureQuantification errors