2022
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling
Djebra Y, Marin T, Han P, Bloch I, Fakhri G, Ma C. Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling. IEEE Transactions On Medical Imaging 2022, 42: 158-169. PMID: 36121938, PMCID: PMC10024645, DOI: 10.1109/tmi.2022.3207774.Peer-Reviewed Original ResearchConceptsSpace alignmentSampled k-space dataState-of-the-art methodsIntrinsic low-dimensional manifold structureNumerical simulation studyLow-dimensional manifold structureState-of-the-artLinear subspace modelSparsity modelModel-based frameworkSubspace modelManifold structureMathematical modelManifold modelSparse samplingImage reconstructionMRI applicationsDynamic magnetic resonance imagingSpatiotemporal signalsSpatial resolutionPerformanceSimulation studyImagesMethodSparsityPosterior estimation using deep learning: a simulation study of compartmental modeling in dynamic positron emission tomography
Liu X, Marin T, Amal T, Woo J, Fakhri G, Ouyang J. Posterior estimation using deep learning: a simulation study of compartmental modeling in dynamic positron emission tomography. Medical Physics 2022, 50: 1539-1548. PMID: 36331429, PMCID: PMC10087283, DOI: 10.1002/mp.16078.Peer-Reviewed Original ResearchConceptsConditional variational auto-encoderDeep learning approachNeural networkDeep learningMarkov chain Monte CarloVariational Bayesian inference frameworkLearning approachDeep learning-based approachVariational auto-encoderDeep neural networksLearning-based approachDynamic brain PET imagingPosterior distributionEstimate posterior distributionsBayesian inference frameworkAuto-encoderMedical imagesInference frameworkNetworkSimulation studyBrain PET imagingLearningPosterior estimatesInferior performanceImages
2019
PET Image Deblurring and Super-Resolution With an MR-Based Joint Entropy Prior
Song T, Yang F, Chowdhury S, Kim K, Johnson K, Fakhri G, Li Q, Dutta J. PET Image Deblurring and Super-Resolution With an MR-Based Joint Entropy Prior. IEEE Transactions On Computational Imaging 2019, 5: 530-539. PMID: 31723575, PMCID: PMC6853071, DOI: 10.1109/tci.2019.2913287.Peer-Reviewed Original ResearchContrast-to-noise ratioStructural similarity indexHoffman phantomImage deblurringDigital phantomPhantom studyPeak signal-to-noise ratioSuper-resolution frameworkQuantitative accuracySimilarity indexSignal-to-noise ratioSpatial resolutionPhantomImage quantitationSuper-resolutionTau imaging studiesImage qualityPET imagingDeblurringHigh-resolution MR imagingRoot mean square errorSimulation studyBrainWebPost-processingPenalty function